
A RECONSTRUCTION OF STEEL’S MULTIVERSE PROJECT

The stubborn recalcitrance of some independent set-theoretic statements, most

prominently the Continuum Hypothesis (CH), and the proliferation of powerful

techniques for generating new models have led some observers to champion a

stark revision in our understanding of the set-theoretic project: the goal isn’t to 5

develop a theory, as complete as possible, describing a single universe of sets;

rather, the target is an array of universes, a multiverse. Several such theories

have been proposed, and the general idea is now prevalent enough to have made

its way into the prose of at least one textbook (Weaver [2014]). To take the exam-

ple of CH, most such theories posit an array of universes with CH true in some 10

and false in others, which is taken to show that it has no determinate truth value,

that efforts to settle it definitively, one way or the other, are misguided. Against

this backdrop, John Steel’s approach is particularly intriguing: he offers his mul-

tiverse theory instead as a means toward assessing CH, of exploring whether or

not it’s defective, whether or not the old enterprise of attempting to settle it is in 15

fact viable. It’s this undertaking of Steel’s that we intend to examine here.

Steel’s presentation of the motivations, structure, and current status of his

multiverse project appears in condensed form in his paper ’Gödel’s Program’

(Steel [2014]). Our goal is to tell as coherent and compelling a philosophical
1



A RECONSTRUCTION OF STEEL’S MULTIVERSE PROJECT 2

story as we can while capturing what we take to be the spirit of Steel’s enter- 20

prise. Often this involves some filling in,1 some elaboratation,2 and some out-

right departures, especially around his appeals to meaning and synonymy,3 but

also occasionally in the mathematics. In the end, we can’t claim to have made ev-

ery turn of the argument entirely air-tight, so we conclude with a brief discussion

of a few lingering questions. 25

We begin in §1 with a sketch of the historical background against which mul-

tiverse thinking first emerged. §2 introduces Steel’s approach by contrasting it

with those of Hamkins (Hamkins [2012]) and Woodin (Woodin [2011]). The cen-

tral notion of ’natural theory’ is examined in §3, and Steel’s multiverse theory

itself is presented in §4. §5 explores the relationship between the multiverse lan- 30

guage and that of ordinary set theory. CH is treated in §6, before the concluding

§7.

1. HISTORICAL BACKGROUND

In 1878, soon after proving that there are more reals than naturals, Cantor

asked ‘into how many and what [cardinality] classes do [infinite sets of reals] 35

fall?’4 He famously conjectured that the answer is ‘two’ – the Continuum Hy-

pothesis – which he reformulated in 1883 to the claim that the reals have the

cardinality of the set of countable ordinals, and in the 1890s to the now-standard

2ℵ0 = ℵ1. Cantor may have hoped to prove CH by doing so for closed sets and

1E.g., we take the discussion of natural theories in §3 and the emphasis on foundational theories to
motivate MV at the beginning of §4 to fill in Steel’s line of thought in §§2-3 and §5 of Steel [2014],
and the description of a possible route back to a universe theory in §6 to fill in his line of thought
in §§5-6.
2E.g., the explicit appeal to axiomatizabilty in defense of Amalgamation in §4. (The key Theorem
37 was provided by Woodin in response to our query.) See also footnote 77.
3E.g., the replacement of ’settled by the meaning currently assigned to L∈’ with ’impartiality’ and
the replacement of ’synonymous with t(ϕ) for some ϕ in LMV ’ with ’legitimateT ’ in §5.
4Translated by Jourdain in the introduction to his translation of Cantor’s articles of 1895 and 1897
(Cantor [1952], p. 45).
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generalizing from there, but this method was doomed.5 At the famous interna- 40

tional congress in Heidelberg in 1904, König claimed to have disproved CH by

showing that the reals can’t be well-ordered, but by the next day Zermelo had

found an error in the proof.6 Hilbert’s well-known 1925 paper, ‘On the infinite’,

included an attempted proof that CH is true.7 Other less well-known efforts to

resolve CH were similarly unsuccessful.8. 45

The forces behind this impasse were gradually revealed: in the 30s, Gödel

used the inner model L to show that ZFC (if consistent) can’t disprove CH, and

in the 60s, Cohen used his new technique of forcing to show that ZFC (if con-

sistent) can’t prove it either. Foreseeing Cohen’s result as early as the 40s, Gödel

proposed a search for new axioms, leading with the suggestion of large cardinal 50

axioms. At the time, inaccessible cardinals and Mahlo cardinals were the best on

offer, and Gödel recognized that ‘there is little hope of solving [CH] by means of

. . . axioms of infinity’ like these, because, for example, his proof of ‘the undis-

provability of [CH] goes through for all of them without any change’ (Godel

[1990], p. 182). By 1964, he held out some hope for large cardinals ‘based on dif- 55

ferent principles’ (Godel [1990], p. 261) -- a footnote discusses measurables -- but

a postscript added in 1966, in light of Cohen’s work, notes that ‘it seems to fol-

low that the axioms of infinity mentioned in [the] footnote . . . are not sufficient

to answer the question of the truth or falsity of Cantor’s continuum hypothesis’

(ibid., p. 270). Lévy and Solovay confirmed this for all standard large cardinals 60

in Levy and Solovay [1967].

5The idea was to generalize the Cantor-Bendixson theorem, which says that any uncountable
closed set of reals has a perfect subset (and hence has the size of the continuum). Unfortunately,
as Bernstein showed in 1908, this can’t work, because the Axiom of Choice implies that the reals
can be decomposed into two uncountable sets, neither of which contains a perfect subset.
6This inspired Zermelo to formulate the Axiom of Choice and to establish on that basis that the
continuum can be well-ordered.
7Hilbert [1967]. Van Heijenoort’s introduction to the paper describes the relation between Hilbert’s
attempted proof and Gödel’s later proof of the relative consistency of CH.
8See Moore [1989]).



A RECONSTRUCTION OF STEEL’S MULTIVERSE PROJECT 4

A new species of axiom candidate emerged in the late 60s, using the notion

of determinacy.9 Determinacy was quickly shown to imply other, more familiar

regularity properties – if all sets of reals are determined (AD), then they’re also

Lebesgue measurable and have the Baire and perfect subset properties – while 65

the Axiom of Choice guaranteed the existence of an undetermined set. To pre-

serve Choice, interest focused on positing the determinacy of definable sets: the

projective sets (PD) or the sets constructible from R (ADL(R)). These hypothe-

ses settled questions of descriptive set theory that had been open since the 20s

and that Godel’s and Cohen’s techniques showed could not be answered from 70

ZFC alone. The perceived downside was their lack of intrinsic support: ‘No

one claims direct intuitions . . . either for or against determinacy hypotheses’

(Moschovakis [2009], p. 472). This shortcoming was remedied in the late 80s,

when Martin, Steel, and Woodin derived PD and ADL(R) from large cardinal

axioms. Unfortunately, it was known even before this that determinacy assump- 75

tions can’t settle CH. 10

This long history of failure to settle CH has led some observers to despair and

some skeptics to press their advantage:

The striking thing, despite all such progress, is that -- contrary

to Gödel’s hopes -- the Continuum Hypothesis is still completely 80

undecided . . . That may lead one to raise doubts not only about

Gödel’s program but its very presumptions. Is the Continuum

Hypothesis a definite problem as Gödel and many current set the-

orists believe? (Feferman [2000], pp. 404-5)

Even believers in the determinateness of CH admit that the skeptics have a point: 85

9A subset A of Baire space (ωω) is determined iff one or the other player has a winning strategy
in an infinite game in which they alternate choosing natural numbers and the first player wins iff
the result is in A.
10See Steel [2016] for the history.
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Those who argue that the concept of set is not sufficiently clear

to fix the truth value of CH have a position which is at present

difficult to assail. As long as no new axiom is found which decides

CH, their case will continue to grow stronger, and our assertion

that the meaning of CH is clear will sound more and more empty. 90

(Martin [1976], pp. 90-91)11.

In other words, perhaps it isn’t that our methods have failed to crack CH, but

that the problem itself is somehow ill-formed.

This is the state of affairs that inspires multiverse thinking. Maybe it’s a mis-

take to pursue a unified theory of a single domain of sets; maybe we should 95

allow for a range of theories describing a range of domains. Instead of doggedly

demanding an answer to the Continuum Problem, maybe we’re failing to recog-

nize the solution that’s right before our eyes:

The answer to CH consists of the expansive, detailed knowledge

set theorists have gained about the extent to which it holds and 100

fails in the multiverse, about how to achieve it or its negation

in combination with other diverse set-theoretic properties . . . the

most important and essential facts about CH are deeply under-

stood, and these facts constitute the answer to the CH question.

(Hamkins [2012], p. 429) 105

Various of these themes appear throughout the multiverse literature. We now

sketch three approaches, due to Hamkins, Woodin, and Steel.

2. MOTIVATION

A first step toward understanding Steel’s multiverse language and theory is to

recognize that his motivation is different from those of other multiverse theorists, 110

11Martin is more optimistic in his paper for Koellner’s EFI project (Martin [201x]).
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most prominently Hamkins and Woodin. All three are concerned with CH in

one way or another, all three engage in multiverse thinking, but they do so for

quite different reasons, with quite different metaphysics and methods, and quite

different outcomes. Our hope is that highlighting these differences will bring all

three into sharper focus. 115

Hamkins’s case for his multiverse is grounded in the phenomenology of set-

theoretic practice; his multiverse is posited to account for that mathematical ex-

perience:

Our most powerful set-theoretic tools, such as forcing, ultrapow-

ers, and canonical inner models, are most naturally and directly 120

understood as methods of constructing alternative set-theoretic

universes. . . . we have a robust experience in these worlds . . .

The multiverse view . . . explains this experience by embracing

them all as real. (Hamkins [2012], pp. 418)

We seem to have discovered the existence of other mathemati- 125

cal universes . . . and the multiverse view asserts that yes, indeed,

this is the case. (Ibid., p. 425)

This generates a rich platonistic metaphysics:

The multiverse view is one of higher-order realism -- Platonism

about universes. (Ibid., p. 417) 130

It includes worlds for many different set theories, both weak and strong:12

There seems to be no reason to restrict inclusion to only ZFC mod-

els, as we can include models of weaker theories ZF, ZF−, KP, and

so on, perhaps even down to second-order number theory. (Ibid.,

p. 436) 135

12Philosophers of mathematics may be reminded of the Plenitudinous Platonism of Balaguer
[1998].
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Hamkins rejects any call for an explicit axiomatization, but he does identify cer-

tain principles that ‘we might expect to find in the multiverse’ (ibid., p. 436). (It

isn’t clear what sort of epistemic access we have to these principles, what reason

we have to think the platonic multiverse has these features.) Finally, as we’ve

seen, Hamkins takes the status of CH to be resolved: 140

On the multiverse view . . . the continuum hypothesis is a settled

question; it is incorrect to describe CH as an open problem. The

answer to CH consists of the expansive, detailed knowledge set

theorists have gained about the extent to which it holds and fails

in the multiverse, about how to achieve it or its negation in combi- 145

nation with other diverse set-theoretic hypotheses. (Ibid., p. 429)

In sum, then, the line of thought goes like this: the phenomenology of set-

theoretic practice is explained by, and therefore justifies, a generous abstract on-

tology; some facts about this abstract ontology provide a final answer to the CH.

Woodin’s concerns are in some ways orthogonal to Hamkins’s. He isn’t out to 150

explain set-theoretic experience, but to block what he sees as a way of denying

that CH has a determinate truth value:

Refinements of Cohen’s method of forcing in the decades since

his initial discovery of the method and the resulting plethora of

problems shown to be unsolvable . . . have . . . almost compelled 155

one to adopt the generic-multiverse perspective. (Woodin [2011],

pp. 16-7)

Let the multiverse (of sets) refer to the collection of possible uni-

verses of sets. The truths of . . . Set Theory are the sentences which

hold in each universe of the multiverse. The multiverse is the 160

generic-multiverse if it is generated from each universe of the col-

lection by closing under generic extensions (enlargements) and
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under generic refinements (inner models of a universe which the

given universe is a generic extension of). (Woodin [2011], p. 14)

Clearly, the generic multiverse is less encompassing than Hamkins’s wild menagerie,165

including as it does only generic extensions and refinements. Since a set-theoretic

claim is to be true in this multiverse just when it’s true simpliciter in all its

worlds, we see that CH is neither true nor false.

To block this conclusion, Woodin focuses on the notion of multiverse truth and

shows (modulo a proper class of Woodin cardinals and the Ω-conjecture) that its 170

Π2 truths are Turing reducible to the truths of an initial segment that’s uniformly

definable in any one of its universes; this reduction, he claims, is inconsistent

with ‘the very nature of [the] conception’ of set-theoretic truth (Woodin [2011], p.

17).13 (Here, once again, it’s unclear what sort of epistemic access is involved.) In

this way, Woodin claims to undercut the generic-multiverse conception of truth, 175

and with it, the purported challenge to the determinateness of CH.

Different as they are, there’s a sense in which Hamkins and Woodin stand

together on one side of a divide that separates them both from Steel. For the

two of them, the multiverse promise (Hamkins) or threat (Woodin) is that the

pre-theoretic subject matter of set theory isn’t a single universe but an array of 180

universes.14 From this multiverse perspective, the language of set theory is still

L∈, but because it’s understood as describing a different pre-theoretic metaphy-

ics, some statements in that language – CH most conspicuously – have a new

status. In stark contrast, Steel bypasses any pre-theoretic metaphysics. For Steel,

the question at issue is whether the language of set theory should be L∈, a lan- 185

guage of sets, or a multiverse language of sets and universes. As we’ll see (in

13See Meadows [202x] for an assessment of this argument.
14Koellner employs a more general terminology of ’pluralism’ and ’non-pluralism’, which dis-
agree on whether or not ’there is an objective [unique?] mathematical realm’ (Koellner [Spring
2014], paragraph 2).
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§4), the pre-theoretic subject matter guiding the formulation of Steel’s multiverse

language and multiverse theory is again just theories, first-order theories in the

language L∈ of set theory.

It should be noted that this philosophically consequential contrast between 190

Hamkins and Woodin on one side and Steel on the other is compromised when

Steel formulates the central question about CH in this way: is ’the truth value of

CH ... determined by the meaning we currently assign to’ L∈? (Steel [2014], p.

154).15 Here ’the current meaning of L∈’ looks to function as a new sort of pre-

theoretic subject matter.16 In what follows, we present this as Steel’s preferred 195

way of identifying the defect CH might suffer from – not being settled by the

current meaning assigned to L∈ – but eventually we argue not only that this

is inessential, but that it in fact clashes with the central mechanisms of Steel’s

position. We offer a replacement that’s better suited to the job and that removes

any hint of back-sliding in the direction of Hamkins and Woodin. 200

Steel’s focus, then, is linguistic, that is, on theories, and in particular on ’frame-

work theories’, that is, theories suited to the traditional foundational role:17

Why not simply develop all natural theories . . . ? Let 1000 flowers

bloom! . . . The problem with this . . . is that we do not want ev-

eryone to have his own private mathematics. We want one frame- 205

work theory, to be used by all, so that we can use each other’s

work. It is better for all our flowers to bloom in the same garden

. . .

15This is an improvement over the formulation of Steel’s question in §3 of Maddy [2017]: ’is CH
meaningful?’. To suggest that CH might be meaningless in any ordinary sense is a non-starter, but
the possibility that a meaningful statement might lack a truth value is not.
16This begins to resemble contemporary versions of conceptualism. See, e.g., the quotation from
Martin on p. 5.
17Steel treats the terms ’foundational theory’ (Steel [2014], p. 154) and ’framework theory’ (ibid.,
p. 164) interchangeably. For more on the foundational aspects of universe and multiverse theories,
see Maddy [2017].



A RECONSTRUCTION OF STEEL’S MULTIVERSE PROJECT 10

The goal of our framework theory is to maximize interpretive

power, to provide a language and theory in which all mathemat- 210

ics, of today and of the future so far as we can anticipate it, can be

developed. (Steel [2014], pp. 164-5)

Given the overarching goal of ’maximizing interpretive power’,18 Steel takes

large cardinals to be a good start on how to proceed beyond ZFC: they provide

an effective measure of consistency strength; there is good evidence for their con- 215

sistency, especially for those with canonical inner models (Steel [2014], pp. 156,

164). The question, for him, is how we go on from there, and what bearing this

has on the meaning of set-theoretic language, and hence on the determinacy of

CH.

The key to Steel’s answer is his contention that the natural theories aren’t a 220

chaotic collection, that

In fact, the different natural theories . . . are not independent of

one another. (Steel [2014], p. 164)

His goal, then, is to give all these natural theories fair and equal consideration:

We seek a language in which all these theories can be unified, 225

without bias toward any, in a way that exhibits their logical re-

lationships . . . We want a neat package they all fit into. (Steel

[2014], p. 165)

In this way, Steel hopes to address what is for him the central question -- is CH

settled by current set-theoretic meaning? -- without prejudging the answer. To 230

18Steel distinguishes ’interpretive power’ from ’consistency strength’: ’Maximizing interpretive
power entails maximizing consistency strength, but it requires more, in that we want to be able
to translate other theories/languages into our framework theory/language in such a way that we
preserve their meaning. The way we interpret set theories today is to think of them as theories of
inner models of generic extensions of models satisfying some large cardinal hypothesis, and this
method has had amazing success’ (Steel [2014], p. 165). This preference for so-called ’meaning
preserving interpretations’ is implicit in the analysis of ’natural theories’ in §3 below.



A RECONSTRUCTION OF STEEL’S MULTIVERSE PROJECT 11

understand how this goes, we must first understand natural theories and the

sense in which they aren’t ‘independent of one another’.

3. NATURAL THEORIES

To begin at the beginning, what are ‘natural’ theories? Understandably, Steel

isn’t precise about this, but he does give us a hint: 235

By ‘natural’ we mean considered by set theorists, because they

had some set-theoretic idea behind them. (Steel [2014], p. 157)

We might say a natural set theory is one with a serious mathematical motiva-

tion. This is a broader class of theories than framework theories – foundational

theories in which ‘all mathematics . . . can be developed’ – but presumably all 240

framework theories are natural. On the other extreme, unnatural theories would

include those ‘using self-referential sentences, for example’ (ibid.) or what we

might call ‘Gödelian trickery’ (e.g., ZFC + ¬Con(ZFC)). This obviously isn’t

enough to firmly delimit the class of natural theories, but the intention behind

the notion should be clear enough. The claim, then, is that all such theories are 245

interrelated. We can see this, Steel tells us, in ‘logical relationships . . . brought

out in our relative consistency proofs’ (ibid., p. 164).

The reference here is to the proofs involved in establishing that the hierarchy

of large cardinal axioms provide an apt measure of consistency strength. What’s

emerged over the years is that many theories set theorists consider turn out to 250

be equiconsistent with ZFC extended by one large cardinal axiom or another.

Moreover, these large cardinal axioms are linearly ordered by their consistency

strength. Of course it’s possible to concoct a theory for which this fails, but as

a straightforward matter of empirical fact, it has been true for ‘natural’ theories

entertained to date. So, for example: 255
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Theorem 1. (1) Con(ZFC + projective sets are Lebesgue measurable)

↔ Con(ZFC + ∃inaccessible cardinal).

(2) Con(ZFC + ω1 has a precipitous ideal)↔ Con(ZFC + ∃measurable cardinal).

(3) Con(ZFC + ∆1
2-determinacy)↔ Con(ZFC + ∃Woodin cardinal).

(4) Con(ZF + AD)↔ Con(ZFC + ∃infinitely many Woodin cardinals).19
260

The pervasiveness of this phenomenon has led to the widespread belief that the

consistency strength of all natural theories can be measured by the large cardinal

hierarchy:

Phenomenon 1: Every natural theory extending ZFC is equicon-

sistent with a theory of the form ZFC + LCA, where LCA is some 265

large cardinal axiom.

Steel is calling attention to the nature of the proofs involved in establishing

these equiconsistencies because, as a matter of fact, they all follow a certain im-

portant pattern. If T is a natural theory extending ZFC and Φ is the relevant large

cardinal axiom, we proceed roughly as follows: in one direction, using Cohen’s 270

forcing technique, we start from a countable modelM of ZFC + Φ and define a

poset P inM such that whenever G is P-generic overM,M[G] thinks T, that

is, such that P forces T; in the other direction, starting from a modelM of T, we

define an inner model N such that N thinks ZFC + Φ.20

The prevalence of this form of proof suggests: 275

19(1) is due to Solovay [1970] and Shelah [1984]. (2) is due to Jech et al. [1980]. (3) and (4) are due
to Woodin.
20For example, in (3) of Theorem 1, we take a countable modelM of ZFC with a Woodin cardinal
δ and then show that if we collapse δ using a G that’s Col(ω, δ)-generic overM, we obtain a model
M[G] in which ∆1

2-determinacy is true. In the other direction, we take a model of ZFC in which
∆1

2-determinacy is true and show that in a definable inner modelN , the HOD ofN thinksN ’s ω2
is Woodin. See Neeman’s chapter in Foreman and Kanamori [2009] for a detailed account of the
forward direction, and Koellner and Woodin’s following chapter for the converse.
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Phenomenon 2: For every natural theory extending ZFC, there is

an LCA such that the ZFC + LCA proves that theory holds in an

inner model or a forcing extension.

The significance of Phenomenon 2 is precisely what Steel claims: it shows how

natural theories are interrelated. To see this, suppose T and S are theories ex- 280

tending ZFC that are connected in the way these equiconsistency proofs require,

that is, suppose that in any model of S, we can define a P that forces T and that

any model of T contains an inner model of S. Then it’s a straightforward conse-

quence of the Lévy-Shoenfield absoluteness theorem that they have the same Σ1
2

consequences: 285

Theorem 2. Suppose S and T are theories extending ZFC such that:

(1) S proves that there is some P such that P T.

(2) Every modelM of T has anM-definable inner modelN with the same ordinals

that satisfies S.

Then T =Σ1
2

S; i.e., T and S have the same Σ1
2 sentences as consequences. 290

Proof. First recall that the Lévy-Schoenfield theorem21 tells us that if ψ is Σ1
2,

M,N are models of ZFC andM is an inner model of N , then

M |= ψ ⇔ N |= ψ.

Let ψ be Σ1
2. We show that T |= ψ iff S |= ψ.

(→) Suppose T |= ψ and let M be a countable model of S. We claim that

M |= ψ. To see this let G be P-generic overM. (1) tells us thatM[G] |= T and 295

soM[G] |= ψ. Then sinceM is an inner model ofM[G], we see thatM |= ψ.22

21For a detailed account of this theorem see Theorem 25.20 of Jech [2003] or Theorem 13.15 of
Kanamori [2003].
22Note that we are forcing over models of ZFC that might not be well-founded. This is well known
to be harmless (see Corazza [2007] for a comprehensive account of forcing in such situations).
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(←) Suppose S |= ψ and let M be a countable model of T. We claim that

M |= ψ. By (2), we may fix an M-definable inner model N of M such that

N |= S. By our assumption we see that N |= ψ; and since N is an inner model

ofM we see thatM |= ψ. � 300

Given Phenomenon 2, it follows that no natural theories extending ZFC can dis-

agree about Σ1
2 statements:

If T, S are natural theories extending ZFC, then either

T ⊆Σ1
2

S or S ⊆Σ1
2

T.

The idea here is that even if T and S are not equiconsistent, they will each be

equiconsistent with some large cardinal, so one of the directions from Theorem 2 305

is always available. More specifically, exploiting Phenomenon 1, suppose T and

S have been shown to be equiconsistent via forcing or an inner model to large

cardinal axioms LCT and LCS respectively. Then since large cardinal axioms are

linearly ordered by strength, we may suppose without loss of generality that

LCT interprets LCS via an inner model. By repeated use of Phenomenon 2 and 310

Theorem 2 we then see that: T and LCT have the same Σ1
2 consequences; LCT

has possibly more Σ1
2 consequences than LCS;23 and LCS and S have the same Σ1

2

consequences. This means that natural theories extending ZFC cannot disagree

about Σ1
2 sentences.24

And this style of consequence continues:25
315

23For this we rely on the fact that the known large cardinals are linearly ordered by consistency
strength. Moreover the proof that the consistency LCT implies the consistency of LCS can – at
worst – be established by defining a model M of LCS from a model N of LCT and both of these
models can be understood has having the same ω1. This then suffices for a further use of the
Lévy-Schoenfield theorem.
24Note that it is crucial that T and S are natural theories. For a pathological example, observe
that ZFC +¬Con(ZFC) is equiconsistent with ZFC but it clearly doesn’t agree with ZFC on all Σ1

2
sentences.
25By “infinite Woodins,” we mean infinitely many Woodin cardinals.
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ZFC+∀x x#

exists

we

have
T ⊆Σ1

3
S or S ⊆Σ1

3
T

For any two

natural theories

extending

ZFC+ infinite

Woodins
T ⊆Σ1

ω
S S ⊆Σ1

ω
T

ZFC+ infinite

Woodins &

Measurable

above

T ⊆Th(L(R)) S S ⊆Th(L(R)) T

The proofs of specific cases of this phenomena also follow the template above.26

The upshot is that as we add more large cardinal axioms, we remove the possi- 320

bility of disagreement between natural theories extending them:

(*) As natural theories proceed up the large cardinal hierarchy

in consistency strength, they agree on an ever-increasing class of

mathematical statements.

It’s worth recalling that these ever-increasing classes have their origin in the 325

work of the French analysts Baire, Borel, and Lebesgue in the early years of the

20th century. Alarmed by the role of pathological functions in the foundations

of analysis in the late 19th century, they set out to bring order to the study of

26For example, in the cases where every set has a sharp, we show that there is a kind of gen-
eralized proof theory for the Σ1

3 sentences in the sense that their truth can be witnessed by the
ill-foundedness of a certain tree. In this case, the Martin-Solovay tree suffices (see chapter 15 of
Kanamori [2003]). For the other two, we rely on a generalisation of this known as a homogeneous
tree (see chapter 32 of Kanamori [2003] and Neeman’s chapter in Foreman and Kanamori [2009]).
One might also think of the Lévy-Shoenfield tree used in Theorem 2 as providing a kind of proof
theory for Σ1

2 facts. One might think of the ill-foundedness of such a tree as being analogous the
existence of an open branch in a proof tree or tableau in first order logic. It turns out that – in the
presence of sufficient sharps – this proof theory remains intact through forcing and inner model
constructions. Thus if T and U are natural theories – so linked by either forcing or an inner model
construction – then they agree about how this proof theory works. In this way, the Σ1

3 sentences
are preserved and disagreement is removed.



A RECONSTRUCTION OF STEEL’S MULTIVERSE PROJECT 16

functions from reals to reals by classifying them according to their complexity.

The process began with the Borel hierarchy ({Σ0
α}α<ω1), where the complexity of 330

functions is reduced to that of sets (for example, a function is Borel iff every the

inverse image of every Borel set is Borel). Complexity for sets of reals is then de-

fined in familiar topological terms, and as hoped, the Borel sets turned out to be

fairly well-behaved, enjoying regularity properties like Lebesgue measurability

and the perfect set property. The Σ1
ns involved in (*) arose as the effort to do- 335

mesticate parts of analysis continued in the Russian school of Lusin and Souslin.

The regularity properties were extended to Σ1
1, but stalled at the perfect subset

property for Π1
1 and Lebesgue measurability for Σ1

2. Unbeknownst to Lusin and

Souslin, their failures weren’t from lack of imagination: ZFC isn’t enough to set-

tle these matters. With the introduction of determinacy hypotheses, eventually 340

derived from large cardinals, regularity was extended to the entire projective

hierarchy. Thus the original goal of delimiting the more civilized, more well-

behaved portion of analysis was extended.

So these classification hierarchies of Borel and projective sets of reals origi-

nated in an effort to isolate the more straightforward, down-to-earth portion of 345

analysis; Steel refers to statements involving these sets as ’concrete’. In these

terms, (*) becomes:

Phenomenon 3: As natural theories proceed up the large cardinal

hierachy in consistency strength, they agree on an ever-increasing

class of concrete mathematical statements. 350

The trouble, of course, is that CH is immune to this kind of disagreement-removal:

it isn’t concrete; large cardinal axioms aren’t enough. This is what raises the

specter, for Steel, that ’the truth value of CH is not determined by the meaning

we currently assign’ to the language of set theory (Steel [2014], p. 154). The
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language of ZFC all by itself might be luring us into asking questions with no 355

answers. This possibility can’t be ignored:

Certainly we do not want to employ a syntax which encourages

us to ask pseudo-questions, and the problem then becomes how

to flesh out the current meaning, or trim back the current syntax,

so that we can stop asking pseudo-questions. (Steel [2014], p. 154) 360

As we’ll see, Steel’s multiverse language is his tool for this project. We focus first

on the ’trimming’ option and return to the ’fleshing out’ toward the end of §6.

4. MULTIVERSE LANGUAGE AND THEORY

With this understanding of natural theories in hand, we return to the moti-

vation for Steel’s multiverse. We have good reason to adopt ZFC + LCs,27 but 365

don’t know how to go on from there. We’ve seen (in §3) that all natural theo-

ries will agree on concrete mathematics. Maybe this is all we should ask of our

foundational or framework theory:

Why not simply develop all natural theories? . . . Let 1000 flowers

bloom! (Steel [2014], p. 164) 370

But we’ve also seen (in §2) that Steel rejects this solution on the grounds that it

wouldn’t provide a unified framework:

We do not want everyone to have his own private mathematics.

We want one framework theory, to be used by all, so that we can

use each other’s work. It is better for all our flowers to bloom in 375

the same garden. If truly distinct frameworks emerged, the first

order of business would be to unify them. (Ibid.)

27We use ’LCA’, e.g., in Phenomena 1 and 2, as a stand-in for some particular cardinal axiom or
other and ’LCs’ as a rough term for traditional large cardinal axioms in general.
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The trouble is that our guiding principle – maximize interpretive power – has

given out. So Steel suggests:

Before we try to decide whether some such theory is preferable to 380

the others, let us try to find a neutral common ground on which

to compare them. We seek a language in which all these theories

can be unified, without bias toward any. (Ibid., p. 165)

The trick then is to find such a neutral language.

Phenomenon 2 of the previous section suggests that all natural theories are 385

realized in inner models or forcing extensions of models of ZFC + LCA for some

large cardinal axiom LCA. Rather than trying to codify the natural theories di-

rectly, we could concoct a collection of ’worlds’ that manage to realize each of

them, a collection of worlds, then, that’s closed under inner models and forcing

extensions. 390

But notice that for present purposes, we don’t actually want to represent all

natural theories by worlds in our neutral ground. The point of the exercise, after

all, is the hope it might help us determine whether or not independent state-

ments like CH are settled by the current meaning we assign to the language of

set theory. In the past, questions of this sort have been answered by finding ways 395

to extend our current list of axioms, as we did by adding large cardinal axioms

to ZFC; this would be to determine that ’some such theory is preferable to the

others’ (quoted above). Given our current commitment to ZFC + LCs, then, the

theories we’re interested in, the candidates for the foundational role, are exten-

sions of ZFC + LCs. 400

Unfortunately, there’s no precise characterization of LCs, of what are often

called ’traditional large cardinal axioms’, so we can’t just narrow the range of

natural theories in our neutral ground by stipulating that all our ’worlds’ must
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satisfy ZFC + LCs. But we could, at the very least, try to avoid including theo-

ries with ’anti-large-cardinal axioms’, like V = L, which foreclose the addition 405

of some large cardinals. Theories like this tend to be realized in definable in-

ner models, so one expedient would be to resist closing our collection of worlds

under those.28 Inner models generated by forcing refinements don’t have this

drawback, so they can be included.

Still, though the natural theories realized by definable inner models aren’t 410

represented by worlds in this collection, Steel emphasizes that ’they are already

there, we can talk about them in the multiverse language already’ (Steel [2014],

p. 167). He means, of course, that they can be defined in a world. This is crucial,

as Steel has explained elsewhere, given that the theories realized by those worlds

are to be regarded as candidates for a foundation: 415

It is a familiar but remarkable fact that all mathematical language

can be translated into the language of set theory, and all theorems

of ’ordinary’ mathematics can be proved in ZFC. In extending

ZFC, we are attempting to strengthen this foundation.

. . . 420

In this light we can see why most set theorists reject V = L as

restrictive: adopting it restricts the interpretative power of the

language of set theory. The language of set theory as used by the

believer in V = L can certainly be translated into the language of set

28Steel doesn’t explicitly make the argument of this paragraph and the previous, but it’s clear
from the fact that he requires all worlds in his multiverse to satisfy ZFC that he’s not expecting
all natural theories to be represented by worlds (e.g., ZF + AD is left out). Late in the paper, he
remarks that ’Our current understanding of the possibilities for maximizing interpretive power
[i.e., what a foundational theory is supposed to do] has led us to one theory of the concrete, and a
family of theoretical superstructures for it, each containing all the large cardinal hypotheses’ (Steel [2014],
p. 178, emphasis added). This family is the multiverse, and speaking informally now, he indicates
that each world ought include all large cardinals.
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theory as used by the believed in measurable cardinals, via the transla- 425

tion ϕ → ϕL. There is no translation in the other direction. (Steel

[2000], p. 423, emphasis added)

In other words, part of what makes large cardinals preferable to V = L is that

ZFC + V = L can be realized in a definable inner model,29 so it’s important that

those inner models are ’already there’. 430

To this point, then, our collection of worlds is closed under generic extension

and refinement. Unfortunately, this doesn’t tell us as much as it might seem. Sets

appear here only in some world or other, so given a world V and a poset P in

V, the existence of sets P-generic over V depends on which worlds exist. For

that matter, the single world V by itself is ’closed under generic extension’ in the 435

sense that for every poset P in V and every G that’s P-generic over V, V[G] is

in the collection – but only because there aren’t any such Gs! We can do a little

better by stipulating that

(Extension) Given a world V and P ∈ V, there is a world U and a

G in U such that G is P-generic over V and U = V[G], 440

but so far, this guarantees one P-generic set G and one generic extension V[G],

for each V and P. So the question arises, how many should there be in our

multiverse?

One immediately appealing answer is: all of them! This is the answer Woodin

intends, but just to say this in the intuitive setting where we’re currently oper- 445

ating doesn’t help: ’for every world V, every poset P in V, and every G that’s

P-generic over V, there is a world U such that U = V[G]’ doesn’t determine

how many such Gs there are. To properly convey what he has in mind – ’to il-

lustrate the concept of the generic-multiverse’ (Woodin [2011], p. 14) – Woodin

29And of course the natural theory ZF + AD, mentioned in the previous footnote, will be satisfied
in an inner model in any world with sufficient large cardinals.
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gives us a set-theoretic toy model: we start with a countable transitive model 450

(ctm) M of ZFC (or ZFC + LCA) and form a collection of ctms by closing under

generic extension and refinement.30 Because these models reside in our back-

ground universe, all P-generic Gs are available when we close under generic ex-

tension. Here Woodin relies on our understanding of that background universe

to deliver this full array of generics. 455

This approach would seem to align with Steel’s goals – such a generous array

of generic extensions promises to help realize all candidate foundational theo-

ries. But it turns out that Steel has reason to resist Woodin’s answer.31 To see

this, we need to look more closely at Woodin’s toy model.

Definition 3. If M is a ctm of ZFC, VM is the smallest collection of models con- 460

taining M and such that:32

(1) If N ∈ VM and G is P-generic over N for some P ∈ N, then N[G] ∈ VM;

and

(2) If N ∈ VM and N = N′[G] where G is P-generic over N′ for some P ∈ N′,

then N′ ∈ VM. 465

VM has the following striking feature:

30We adopt the convention of denoting transitive models by M and arbitrary models byM.
31We take up the question of just how good his reason is in §7, but for now our goal is to give the
best formulation we can muster.
32For ease of exposition, we state this definition of Woodin’s VM and Definition 6 of Steel’s MG in
terms of countable transitive models (as do Woodin and Steel), but we actually intend a slight gen-
eralization of both to all countable models (see Appendix B for VM and Definition 25 of Appendix
A for MG. The no-go theorem for Woodin’s multiverse (p. 24 and Theorem 34 of Appendix B)
holds on either version of the definition. The point of the generalization is that it enables theorems
like 8 and 12 on Steel’s multiverse, which capture its purely linguistic character (as opposed to
metaphysical approaches involving an abstract ontology of universes). The generalized versions
are used in the two completeness claims on pp. 24-5 to allow a direct comparison.



A RECONSTRUCTION OF STEEL’S MULTIVERSE PROJECT 22

Theorem 4. (Woodin) For M a ctm of ZFC, there exist Cohen reals c and d over M such

that there is no ctm N of ZFC such that:

M[c] ⊆ N ⊇ M[d]

where N has the same ordinals as M.33

We might say that the two extensions M[c] and M[d] can’t be amalgamated. It

would be difficult to specify exactly how often this happens – the phenomenon

is not restricted to Cohen reals – but at least we can say that in Woodin’s intuitive 470

multiverse, the following claim is false:

(Amalgamation) If V and V ′ are worlds, then there exist posets P

and P′ in V and V ′, respectively, and a world U, a G ∈ U that’s

P-generic over V, and a G′ ∈ U that’s P′-generic over V ′, such

that

V[G] = U = V ′[G′]

For a precise account of what hangs on this, we need more machinery – we

get to this in a moment – but first a rough and informal sketch. In addition to

Extension, we’ve also been assuming that the multiverse is closed under generic

refinement: 475

(Refinement) If V is a world and V = U[G] where G is P-generic

over U for some P in U, then U is a world.

Obviously, Woodin’s toy model satisfies both Extension and Refinement but not

Amalgamation, so speaking loosely for now, it follows that

(i) Extension + Refinement doesn’t imply Amalgamation. 480

Using a different toy model, we show below (p. 28) that

33See (Fuchs et al. [2015]), Section 2, Observation 35 for a proof of this. Also note that this result
holds for the more general case of arbitrary countable models.
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(ii) Extension + Refinement is consistent with Amalgamation.34

So we see that Extension and Refinement alone are too weak for a viable multi-

verse theory: they aren’t enough to settle even the elementary matter of Amal-

gamation. 485

How is the question of Amalgamation to be settled? Steel’s thinking here

comes out in his complaint that

Neither Hamkins nor Woodin presented a language and a first-

order theory in that language, both of which would seem neces-

sary for a true foundational theory. (Steel [2014], p. 170) 490

So far, the candidate foundational theories Steel has been out to bring together for

comparison in the multiverse are universe theories in the first-order language of

set theory, like ZFC + LCs. Presumably in this quotation, when Steel speaks of a

foundational theory in a multiverse language, he’s thinking of what would hap-

pen if our exploration of all candidate universe theories in the ’neutral common 495

ground’ of the multiverse were to conclude that no such theory is ’preferable’ to

the others as a foundation (Steel [2014], p. 165).35 In that eventuality, our current

foundational theorizing about a single universe would be prompting us to pose

questions with no answers, that is, to ask which of a range of candidate foun-

dational theories is ’correct’ where there is no correct or incorrect. Some change 500

would be in order, perhaps to a multiverse theory as foundation, in which case,

obviously, we’d need an explicit multiverse theory to replace ZFC + LCs. What

Steel actually ends up proposing in that eventuality (see §§5 and 6) is that we

’trim back current syntax [i.e., the syntax of L∈], so that we can stop asking

pseudo-questions’ (ibid., p. 154), which for him roughly comes to the same as 505

34This follows directly from Theorem 26 in Appendix A.
35This leaves open the likelihood that some theories will be of more mathematical interest than
others.
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adopting a particular multiverse theory as our foundation. Either way, an ex-

plicit multiverse theory is essential to Steel’s project. Speaking of Woodin’s mul-

tiverse, he writes ’it is not at all clear what its theory would be’ (ibid., p. 170). The

question, then, is whether Woodin’s multiverse can be suitably axiomatized.36

To address this question, we need to adopt a meta-mathematical perspective 510

on Woodin’s intuitive multiverse, and the only way we know to do this is to drop

back into the theory we can agree on – ZFC + LCs – and reason there about a set-

theoretic surrogate. At this point, we again call on Woodin’s VM, this time not as

an intuitive guide to his intentions (as on p. 21), not as a simple tool for proving

(i) (as on p. 23), but as a set-theoretic surrogate for his intuitive multiverse in our 515

meta-mathematical inquiry. Any such meta-mathematical surrogate will be im-

perfect in some ways – even the original identifications of validity with truth in

all set-theoretic models and of ordinary proof with a formal proof predicate have

their infelicities – but without such surrogates, meta-mathematics is impossible.

The question, then, is whether there’s a recursive set of axioms, T, in a suit- 520

able multiverse language such that for all ϕ in this language the following are

equivalent:

(1) T ` ϕ

(2) IfM is a countable model of ZFC, then VM |= ϕ.

Alas, the answer is no.37
525

This means that if Steel wants an axiomatizable multiverse, he can’t follow

Woodin and include ’all’ generic extensions. In fact, a look at the proof of this

no-go theorem reveals that it’s Theorem 4, the violation of Amagamation, that

36See footnote 78.
37As remarked in footnote 32, we use the generalized definitions of VM (and MG below) in
both equivalences to maintain a strict parallelism. The no-go theorem for Woodin’s multiverse is
Theorem 34 of Appendix B.
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blocks the possibility of axiomatization.38 So the natural move for Steel is to add

Amalgamation to Extension and Refinement. Syntactically, Steel’s multiverse 530

theory, MV, builds on formal versions of these three assumptions. Semantically,

he presents a toy model, MG, for some countable model M of ZFC,39 much

as Woodin gives us VM, and that model,MG, appears as a meta-mathematical

device in the proof of (ii), just as VM does for (i). It can then be proved that for

all ϕ in the multiverse language, the following are equivalent 535

(1) MV ` ϕ

(2) IfM is a countable model of ZFC, thenMG |= ϕ.

So Steel has reason to resist Woodin’s approach and to answer the question ’how

many generics’ by adding Amalgamation to the characterization of his intuitive

multiverse. 540

To make this rough story precise, we need a first-order language and theory.

Steel proposes LMV , a two-sorted language with a sort for worlds and a sort for

sets. (We reserve upper case letters like V, U, V0, ...U0, ... for worlds and lower

case letters like x, y, z, x0, ... for sets.40) The language has a single relation symbol

∈ and the atomic well-formed formulae include x ∈ y and x ∈ V but not V ∈ x. 545

Steel formulates his multiverse theory, MV, in this language.

The first two axioms of MV codify our basic understanding of the multiverse’s

worlds and sets. At a minimum, worlds must be extensional and worlds must

think all axioms of ZFC hold:

MV-0 ∀V∀U(∀x(x ∈ V ↔ x ∈ U)→ V = U) 550

MV-1ϕ ∀VϕV

38In his comparison of Woodin’s multiverse with his own, Steel explicitly notes that the former
’does not satisfy amalgamation’ (Steel [2014], p. 170, footnote 22).
39Recall footnote 32.
40In a slight departure from Steel, we avoid W as world variable and reserve it for the class term
in Theorem 5.
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for any axiom ϕ of ZFC.41 (Steel points out that ’one can add large cardinal

hypotheses that are preserved by small forcings . . . as follows: given an large

cardinal hypothesis ϕ, we add "ϕW for all worlds W" ’ (Steel [2014], p. 166). Also,

all worlds are transitive and have the same ordinals: 555

MV-2 ∀V∀x ∈ V x ⊆ V;

MV-3 ∀V∀U∀x(x ∈ OnV ↔ x ∈ OnU);

The fourth axiom guarantees that the only way sets appear in the multiverse is

in worlds:

MV-4 ∀x∃V x ∈ V. 560

The next group of axioms for MV specifies the structure of the multiverse by

codifying the principles we’ve been treating informally. First Extension:

MV-5 (Extension) ∀V∀p ∈ V∃U∃g ∈ U(g is p-generic/V ∧U = V[g]).42

Informally, this says just what it should: given a poset in some world V, there

will be a V-generic g for that poset such that V[g] is a world. 565

Stating Refinement is trickier, requiring the following theorem:43

Theorem 5. (NBG) (Laver, Woodin) There is a class term W(·) ∈ L∈ such that the

following are equivalent:44

(1) N is a generic refinement of the universe; and

(2) N = Wr for some r. 570

41The first of these was not included in the original axioms provided by Steel, however it is re-
quired. We thank an anonymous referee for this observation. The second of these is – strictly
speaking – an axiom schema.
42Contrary to ordinary practice we are using lower case letters for posets and generics to indicate
that these are sets. We shall only do this in the official version of the axioms and when it will help
avoid confusion. We write g is p-generic/V to mean that p is a poset and g is a filter over p which
has a non-empty intersection with every dense subset of p in V; and we write U = V[G] to mean
that for all x ∈ U∃σ ∈ Vp Val(σ, g) = x and for all σ ∈ Vp∃x ∈ U x = Val(σ, g). Val is valuation
function as defined in [Kunen, 2006] and Vp is the class of p-names according to V.
43For a detailed account of this theorem see Reitz [2007].
44By a class term, we mean a term which defines a class and in this case takes a parameter as an
argument. For another example, consider L[x].
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In other words, every generic refinement of a universe can be defined in that

universe using a parameter. Refinement then becomes:

MV-6 (Refinement) ∀V∀r ∈ V∃U(U = (Wr)V).

Informally, this says that for any world V and parameter r ∈ V, there is a world

corresponding to the generic refinement as calculated by the formula Wr in V.45
575

The final axiom of MV is Amalgamation:

MV-7 (Amalgamation)

∀U0∀U1∃p0 ∈ U0∃p1 ∈ U1∃V∃g0, g1 ∈ V

(g0 is p0-generic/U0 ∧ g1 is p1 -generic/U1 ∧V = U0[g0] = U1[g1]).

Informally, this says that given any two worlds U0, U1, there is a world V which

is a generic extension of both those worlds. The theory MV then consists of the

schema MV-1ϕ and the axioms MV-0 and MV-2 through MV-7.

Like Woodin, Steel provides a toy model to illustrate the structure of his mul- 580

tiverse. Informally, the construction goes like this. Begin (as Woodin does) with

a countable transitive model, M, of ZFC; take some poset P ∈ M and form a

generic extension M[G] of M; take some poset Q ∈ M[G] and form a generic ex-

tension M[G][H]; repeat this process transfinitely to form a sequence of models

where each new model is a generic extension of all of its predecessors. Along 585

the way, make sure that every poset from any model in the sequence is used co-

finally often to generate new extensions.46 Finally, add all generic refinements of

models in this sequence. The result is MG. From the construction, it’s obvious

that MG satisfies Extension and Refinement. As for Amalgamation, notice that

45Since Laver and Woodin’s theorem is provable in ZFC, the class term W(·) is available in any
universe, V, of the multiverse.
46Strictly speaking, we need to use iteration at the limit stages and we need to demand that the
poset used at such a limit is a set in M. Then Theorem 34 of Fuchs et al. [2015] tells us that there is
a generic extension of M which has all of the predecessors as generic refinements.
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every world is a generic refinement of some witnessing world in the sequence, 590

so it’s also a generic refinement of every world further along the sequence. This

means that any two worlds are generic refinements of witnesses somewhere in

the sequence, so both will be refinements of whichever of these witnesses ap-

pears furthest along. (See Theorem 26 in the Appendix A for the proof.)

To formalize this idea, the universality of collapse forcing means that we needn’t 595

close under arbitrary posets, that those of the form Col(ω, α) for α ∈ M are

enough. Since the collapse forcings absorb smaller forcings, we can find those

models by looking back into the generic refinements. Thus we end up with the

following definition:47

Definition 6. For M a ctm of ZFC and G, Col(ω,<OrdM)-generic over M, let

MG be the set of countable models N such that for some α ∈ OrdM, P ∈ N and

H, P-generic over N

N[H] = M[G � α].

SinceMG is a model of MV, it follows that Amalgamation is consistent with 600

Extension and Refinement, as advertised in (ii) on p. 23, above. In fact, we’re

now in a position to show that MV is equiconsistent with ZFC:

Proposition 7. Con(ZFC)↔ Con(MV).

Proof. (→) This follows from the proof of Theorem 26 in Appendix A.1.

(←) Suppose ZFC ` ψ ∧ ¬ψ for some ψ ∈ L∈. Fix finite ∆ ⊆ ZFC such that 605

∆ ` ψ ∧ ¬ψ. Then MV ` ∀V (
∧

∆)V ; and so MV ` ∀V (ψ ∧ ¬ψ)V .48 �

47For ease of exposition, we’ve described and expressed this in terms of ctms, but what follows
actually employs a generalization, MG, defined in terms of all countable models. As explained
in footnote 32, this adjustment, including the parallel change to VM, makes no significant dif-
ference in Woodin’s case and preserves the fundamentally linguistic character of Steel’s project
(as opposed to metaphysical approaches like those of Woodin and Hamkins). The particulars are
spelled out in Appendices A and B.
48This proof is overly detailed for such a simple observation. However, we want to draw attention
to the supervaluation-like aspect of the translation employed as it becomes significant later on.
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So MV is a reasonable theory with natural models of the formMG.

At this point, recall the key drawback of Woodin’s multiverse: the theory of

his meta-mathematical surrogate, VM, can’t be axiomatized. We saw that for

Steel this is disqualifying, because his goal is essentially linguistic: he wants to 610

determine whether we should ’trim’ the syntax of L∈ to avoid asking pseudo-

questions; to accomplish this, he seeks to axiomatize the theory of his meta-

mathematical surrogate, MG. We know that the axiom system MV is sound

for models of the formMG, but we need for it to be complete, as well. And it is:

Theorem 8. For all ϕ in the multiverse language, the following are equivalent: 615

(1) MV ` ϕ

(2) IfM is a countable model of ZFC, thenMG |= ϕ, where G is Col(ω,<Ord)M-

generic overM.

(See Appendix A.) So Steel has given a multiverse language and theory intended

to characterize the range of candidate foundational theories and to realize his 620

goal of a ’neutral ground on which to compare them . . . without bias toward any’

(Steel [2014], p. 165).49 We can now try to determine whether CH is indeed a

pseudo-question.

5. THE TRANSLATION FUNCTION

Recall from §2 that the central question for Steel is whether CH is settled by 625

the meaning we currently assign to L∈. More generally, the worry is that a range

of sentences of L∈ may be defective in this way, that attempting to answer them

is chasing pseudo-questions. It’s fairly easy to explicate this type of concern in a

metaphysical theory like Hamkins’s or Woodin’s – there’s an abstract ontology of

worlds in some of which CH is true and others of which it’s false – but we’ve seen 630

49We raise a question about this in §7.
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that Steel’s thinking is strictly linguistic. In that context, it’s not obvious how

to characterize the potential problem without providing a substantive theory of

meaning (no hint of which appears in Steel [2014]). 50

Perhaps we can make more progress on characterizing the defect at issue by

coming at the question from the other end, that is, by looking at the role it ends 635

up playing in Steel’s thought. Recall that in search of a ’neutral common ground’

on which to compare all candidate foundational theories, he devises a multiverse

language, LMV , and multiverse theory, MV – having previously argued that all

such candidates will be represented by its worlds (the extended discussion of

§3 and the opening pages of §4). Now suppose that none of these theories ’is 640

preferable to the others’ as a foundation (Steel [2014], p. 165).51. In that case,

Steel contemplates two options: we could ’flesh out the current meaning’ or we

could ’trim back the current syntax, so that we can stop asking pseudo-questions’

(Steel [2014], p. 154). The option we’re exploring here (until late in §6) is the lat-

ter. Given that all candidiates are on equal footing, Steel’s suggestion is that 645

only the sentences of LMV (and their synonyms) express propositions.52 Assum-

ing Steel’s reference to ’expressing propositions’ is a way of indicating that the

sentences in question are capable of being true or false (’truth-apt’ in the philo-

sophical jargon), this appears to be a way of saying that the sentences of LMV

aren’t subject to the defect Steel has in mind; to put it the other way around, they 650

enjoy the virtue of being settled by the meaning assigned to LMV .

50It’s not even clear what kind of theory would be called for. Obviously the everyday meaning of
’set’ isn’t what’s at issue. If anything, a more limited community of trained set theorists would be
the relevant target, but even if the boundaries of that group could be drawn in some principled
way, would we turn to linguists or sociologists or anthropologists for answers? Most likely, some
sort of a priori philosophical theory of meaning would be required. We consider it an attraction of
the reconstruction described below that it avoids this prospect.
51This leaves open the likelihood that some theories will have more mathematical interest than
others. (Recall footnote 36.)
52This appears to be the Weak Relativist Thesis of Steel [2014], p. 167.
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The parenthetical proviso – ’and their synonyms’ – is included so that many of

our familiar L∈ sentences will also enjoy this virtue, namely those synonymous

with LMV sentences and thus without defect. To isolate these favored sentences

of L∈, Steel offers a translation from LMV to L∈; sentences of L∈ in the range of 655

that translation function mean the same as the corresponding LMV sentences.53

So, for example, Steel suggests that the LMV claim that every world contains a

measurable cardinal is synonymous with the L∈ claim that there is a proper class

of measurable cardinals, so this L∈ claim is not defective.54 Still, he continues,

Clearly we cannot state the CH in this way. The same goes for the 660

many other statements about the uncountable which are sensitive

to set forcing, no matter what large cardinals there may be. (Steel

[2014], p. 167)

But this isn’t the end of the story. CH may still not be defective, because there

may be ’traces of CH and these other sentences in the multiverse language’ (ibid.) 665

– that is, there may be other sentences of LMV with which they’re synonymous.

Steel goes on to explore this possibility – we follow him on this in the next

section – but for now our focus is on the characterization of the potential defect

and its corresponding virtue. It seems to us that the gloss ’unsettled/settled by

the current meaning’ is a problematic fit for the role of defective/virtuous as just 670

described. First, assuming LMV sentences enjoy this virtue, it isn’t obvious that

a translation would preserve it. To take a familiar example, whatever being ’set-

tled by the current meaning’ comes to, it seems there might well be a sentence

53To be clear, Steel isn’t suggesting that the LMV sentence serves to confer meaning on the corre-
sponding L∈ sentence via the translation function; rather the translation allows us to isolate from
among the sentences of L∈, all of which are antecedently meaningful, (some of) those that are
without defect. In fact, Steel goes further; he regards LMV as meaningless syntax until the trans-
lation function is introduced. This seems to us problematic: it’s hard to see how picking some
meaningless syntax and mapping it somehow to L∈ could tell us anything significant about the
sentences in its range. We take the discussion of §3 and the opening pages of §4 to provide a robust
understanding what the formalization in LMV and MV is intended to capture.
54See Steel [2014], p. 167, and Proposition 41 in Appendix C.
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of L∈ that translates to a synonymous sentence of LN (the language of arith-

metic), where the former is settled by the current meaning of L∈ but the latter 675

is unsettled by the current meaning of LN (e.g., a strong consistency statement).

Second, more importantly, what reason is there to think that all LMV sentences

enjoy this virtue in the first place? Why should the meaning currently assigned

to LMV do any better at settling all sentences of LMV than the meaning currently

assigned to L∈ does at settling all sentences of L∈?55 There may be answers to 680

these challenges, but clearly much more would need to be said.

Fortunately, there’s no need to get into these thickets; we offer an alterna-

tive characterization of defective/virtuous that has the added advantage of ty-

ing more directly into the line of thought we’ve been tracing.56 To see this, recall

we’re assuming that our examination of the various candidates shows them all 685

to be on equal footing and that our best response is to trim the syntax of L∈. On

those assumptions, consider the state of two imaginary set theorists, a universe

theorist and a multiverse theorist. The universe theorist speaks L∈, embraces

ZFC + LCs, and persists in trying to figure out the ’correct’ way to extend it;57

under our current assumptions, this universe theorist is just wrong, making a 690

mistake. In contrast, our multiverse theorist is aware that no candidate is prefer-

able, speaks LMV , and embraces MV. This mulitverse theorist thinks, with con-

siderable justification on our assumptions, that the universe theorist is missing

55There are, of course, the familiar Gödel sentences unsettled by LMV , but – to get ahead of our
story, well into §6 – is there any more reason to think that the meaning currently assigned to LMV
settles CHC than to think that the meaning currently assigned to L∈ settles CH?
56Here we appear to depart from Steel, but see footnote 60.
57The universe theorist bears some resemblance to Steel’s strong absolutist (Steel [2014], p. 168):
perhaps it’s unobjectionable to say that she understands V̇ – it’s just her V – but initially she isn’t
privy to LMV , so she takes no stand on whether V̇ is expressible there. She might be characterized
as a thin realist (Maddy [2011]) who hasn’t yet considered the possibility of switching from a
theory of sets to a theory of sets and universes.
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the fact that all the candidate foundational theories represented by worlds in the

multiverse have equal standing.58
695

To put this another way, we might say that from the multiverse theorist’s per-

spective, the universe theorist’s L∈ sentences may reflect an improper bias, re-

stricting attention to one world, while all LMV sentences are suitably impartial.

Steel expresses this idea with an analogy: 59

’the laws of physics are the same in all inertial frames’ has a par- 700

allel to ’the laws of set theory are the same in all universes of the

generic multiverse’. Just as there is something called coordinate-

free geometry, MV and its extensions might be called ’coordinate-

free set theory’. (Private communication, 12/10/18, quoted with

permission.) 705

Just as statements of coordinate geometry can be partial to one coordinate sys-

tem, the sentences of L∈ can be partial to one world of the multiverse. Just as

statements of coordinate-free geometry aren’t partial to any particular coordi-

nate system, the sentences of LMV aren’t partial to any particular world of the

multiverse. This impartiality, we submit, is the virtue that LMV sentences enjoy, 710

that the translation function must preserve, and that CH might lack.

How this works obviously depends on the specifics. The mathematical key

to this line of thought is a recursive function, t : LMV → L∈, defined in ZFC.

The hope is that the universe claim t(ϕ) in some sense captures the spirit of

the multiverse claim ϕ, in particular, that it preserves its multiverse virtue of 715

impartiality. The definition of t (see Appendix C) rests on three basic facts: (1)

since Steel’s multiverse includes Amaglamation, for any worlds V0 and V1, there

exists another world U that’s a generic extension of them both, so any world in

58Again, equal standing as candidates for our fundamental foundational theory. See footnote 52.
59Cf. footnote 57. Perhaps we aren’t departing so much, after all.
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the multiverse is just a generic extension followed by a generic refinement away

from any other; (2) the forcing relation is definable;60 and (3) generic refinements 720

are definable (Theorem 5). With these building blocks, we can show that

Theorem 9. There is a recursive function t : LMV → L∈ such that for all sentences

ϕ ∈ LMV , MV proves that the following are equivalent:

(1) ϕ

(2) ∀Ut(ϕ)U
725

(3) ∃Ut(ϕ)U

Proof. See the proof in Appendix C. (As noted there, in Proposition 40, Amalga-

mation is the essential for this result.) �

So the multiverse theorist, speaker of LMV , supporter of the theory MV, sees

that each world of his multiverse contains an encoding of each multiverse truth. 730

From his multiverse perspective, a universe theorist, speaker ofL∈, is confined to

one of the multiverse’s worlds; she’s a supporter of the theory of that particular

world. But, the multiverse theorist continues, despite this universist’s parochial

stance, she still has access to multiverse truth via the t function. (The multiverse

theorist also sees that the universe theorist is making a serious mistake, the na- 735

ture of which will come clear in just a moment.)

But this encoding of multiverse truth isn’t quite enough. If the impartiality of

ϕ ∈ LMV is to be found in the universe language L∈, that impartiality has to be

something the speaker of L∈, the universe theorist, can appreciate. But an L∈
speaker doesn’t understand LMV and has no reason to be moved by Theorem 9, 740

a proof-theoretic fact about an entirely foreign theory, MV. t(ϕ) is there in her

language, but it might be said that she understands it in a sense analogous to

60Here we just mean definable in the sense of the standard fact that the forcing relation for Σn
formulae is definable for any n ∈ ω.
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that in which I ’see’ a well-camouflaged pheasant hiding in the brush: photons

from its feathers reach my eyes, I’m aware of its colors, but the bird itself I don’t

discern. 745

What brings the significance of t(ϕ) home to the universe theorist is the fol-

lowing theorem, which is loosely speaking equivalent to Theorem 9:

Theorem 10. There is a recursive function t : LMV → L∈ such that ifM is a countable

model of ZFC, G is Col(ω,< Ord)M-generic overM, and ϕ ∈ LMV , then:

M |= t(ϕ)⇔MG |= ϕ.

Proof. See Appendix C. � 750

For any countable model M, our universe theorist can clearly understand the

structureMG. She can then understand LMV as interpreted inMG and MV as

a theory that’s true there. And, finally, Theorem 10 shows her the significance

of t(ϕ): in Steel’s words, the L∈ sentence t(ϕ), evaluated in M, says in effect

that the LMV sentence ’ϕ is true in some (equivalently all) multiverse(s) obtained 755

from me’ (Steel [2014], p. 166). Thus the pheasant emerges from its surroundings.

In fact, there’s a perfectly ordinary sense in which t is ’meaning-preserving’: ϕ

makes a certain claim about the multiverse; t(ϕ), evaluated inM, makes the very

same claim aboutMG. As an LMV sentence, ϕ is impartial because it takes into

account the full range of theories represented in the multiverse; the L∈ sentence 760

t(ϕ) inherits the virtue of impartiality via t, because it takes into account the

full range ofMG, the universe theorist’s best understanding of the multiverse.

So, here is (our version of) Steel’s proposal: on the assumed outcome of our

investigation – that is, on the assumption that there are no good reasons to prefer

any of our candidate foundational theories to the others – the language L∈ is 765

prompting us to pose pseudo-questions, so we should ’trim back our syntax’,
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the syntax of L∈, to favor sentences in the range of t. (This where the multiverse

theorist takes the universe theorist to be making a serious mistake: she thinks all

sentences of L∈ are just as good as those that fall in the range of t.)

How is this to be done? We’re out to specify which sentences of L∈ are legit- 770

imate, which don’t tempt us to pseudo-questions. We’ve seen that what makes

sentences ofLMV legitimate is their impartiality, and that t is meaning-preserving

in the rough-and-ready sense sketched above, so certainly L∈ sentences in the

range of t are legitimate. But it won’t do to simply stop there. As is clear from

the sketch above and the official definition in Appendix C, the outputs of t are 775

quite complex constructions, not the sort of thing that turns up in ordinary set-

theoretic practice; for example, even the sentence affirming the existence of the

empty set – ∃x∀y (y /∈ x)) – isn’t in the range of t. To procure its legitimacy, Steel

would require that ∃x∀y (y /∈ x) be synonymous with t(ϕ) for some ϕ ∈ LMV , but

t(ϕ) involves a great deal more mathematical machinery than ∃x∀y (y /∈ x) – and 780

Steel acknowledges that this makes the synonymy claim problematic (Maddy

[2017], p. 314). Short of requiring synonymy in some recognizable sense, it seems

to us enough that it’s provably equivalent to a formula of the form t(ϕ). So we

say

Definition 11. ϕ ∈ L∈ is legitimateT, where T extends ZFC, if there is some

ψ ∈ LMV such that

T ` ϕ↔ t(ψ)

Here T can extend ZFC, as in stronger versions of MV. Without the subscript, we 785

use ’legitimate’ more loosely, for statements of L∈ that preserve the impartiality

of LMV . So being legitimateT for some reasonable T is a good indicator of being

legitimate.
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On this definition, not only ∀y (y /∈ x), but any ϕ ∈ LMV that provably holds

(or fails) in every world of the multiverse is also legitimate: 790

Theorem 12. Let ϕ ∈ L∈. Then following are equivalent:

(1) MV ` (∀VϕV ∨ ∀V¬ϕV)

(2) ϕ is legitimateZFC.

It follows immediately that all theorems of ZFC are legitimate. In fact, even

some undecidable sentences like ¬Con(ZFC) are legitimate; because such simple 795

claims are unaffected by forcing, they have the same truth value in all worlds

of any particular MG. Steel’s example noted above – the L∈ sentence ’there

is a proper class of measurable cardinals’ – also comes out legitimate because

it’s equivalent in ZFC to t(∀V(there is a measurable cardinal)V) (see Appendix

C4). Indeed, at this point, with ZFC as our background theory, the legitimate 800

statements of L∈ are exactly those that are determinate in Woodin’s multiverse,

that is, true in all worlds or false in all worlds of VM.61 Steel’s focus in the

next section is on the possibility of undermining this extensional equivalence,

of extending legitimacy to some statements that are indeterminate in Woodin’s

multiverse. 805

In sum, then, though this reconstruction doesn’t match the letter of Steel’s pre-

sentation – substituting ’impartiality’ for ’settled by the current meaning’ as the

relevant virtue and ’provable equivalence’ for ’synonymy’ as the impartiality-

preserving relation within L∈ – it seems to us roughly in the spirit of his project.

Notably, it doesn’t require a notion of ’meaning’ any more sophisticated than 810

61A little care is required here. Woodin’s original definition of determinateness focused on count-
able transitive models. So a sentence is determinate if it is true in VM for some ctm M of ZFC.
The sentences which are determinate in this sense are not the legitimateZFC sentences. However,
this distinction is merely an artifact of the move between ctms and the arbitrary countable models
used in the definition of legitimate. So if we relax the transitivity restriction and consider VM for
arbitrary countableM then they are the same.
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the explicit and transparent relation described above between ϕ and t(ϕ).62 In

contrast to the metaphysical theorizing of Hamkins and Woodin, its treatments

of the multiverse language, the multiverse theory, and the relations between

these and our current universe language and theory are all purely linguistic and

proof-theoretic. Those of us who prize the independence of mathematical prac- 815

tice from external questions of meaning, truth, and existence will welcome these

outcomes.

6. THE STATUS OF CH

We turn at last to the continuum problem. Concerned that our only guide to

formulating foundational theories is ’maximize interpretive power’, recognizing 820

that it gives out at ZFC + LCs and that this theory is too weak to settle CH,

we embraced a multiverse of candidate foundational theories. Assuming, as we

have been, that no new guide has emerged to give us reason to prefer some of

these candidates over others, we propose to trim the syntax of L∈ to legitimate

claims, as described in the previous section. The problem of CH can now be 825

formulated with some precision: is CH legitimate, that is, is there a ϕ in LMV

such that the L∈ sentence t(ϕ) is provably equivalent to CH?

Now obviously the legitimacy of CH can’t be established by the route sug-

gested in Theorem 12 because CH is true in some worlds and false in others. But

(as noted in passing above) Steel doesn’t see this as the end of the story: 830

The multiverse language is ... sufficiently expressive to state ver-

sions of the axioms of ZFC, and of the large cardinal hypotheses

preserved by set forcing: we replace ϕ by ’for all worlds W, ϕW ’.

Clearly we cannot state CH this way. The same goes for the many

other statements about the uncountable which are sensitive to set 835

62We regard this as an improvement. Recall footnote 51.
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forcing, no matter what large cardinals there may be. Whether

there are traces of CH and these other sentences in the multiverse

language is the issue we consider next. (Steel [2014], p. 167)

How might this happen? Well, perhaps there’s ’a distinguished reference world

... an individual world that is definable in the multiverse language’ (Steel [2014], 840

p. 168). Steel credits Woodin with the observation that such a world would be

unique and contained in all other worlds. This special world, if it exists, is called

the ’core’ of the multiverse:

Definition 13. A world C is a core of the multiverse iff ∀x(x ∈ C→ ∀U(x ∈ U)).

So defined, C is included in every world, thus in their intersection, and because 845

it’s one of the worlds being intersected, it’s equal to the intersection. Of course

the intersection itself will be definable in any case, but it’s only the core if it’s a

world:

There is a core iff ∃U∀x(x ∈ U → ∀V(x ∈ V))

For ϕ ∈ LMV , let ϕC be ϕ relativized to ∀U(x ∈ U).63 Supposing, then, there is 850

such a core, Steel considers CHC in LMV
64 and suggests that in L∈, t(CHC) might

be ’synonymous’ with CH itself. In that way, CHC would be the ’trace of CH’ in

the multiverse language.

Before examining this move, we should note that since the appearance of Steel

[2014], Usuba (Usuba [2017]) has proved that the multiverse does have a core, 855

assuming a the existence of a extendible cardinal (EXT):65

63Observe that relativizing to the core in this way does not imply that there is a core.
64It might seem that CHC violates impartiality even in the multiverse language because it only
involves what happens in the single world C, but recall that C itself is defined in terms of all
worlds.
65A cardinal κ is η-extendible iff there is an elementary embedding j : Vκ+η → Vθ with critical
point κ for some ordinal θ. κ is extendible if it is η-extendible for every ordinal η. In Steel’s
terminology Steel [2014], pp. 167-168), Usuba’s result suggests that a weak relativist is also a weak
absolutist.
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Theorem 14. MV + ∀U(EXTU) ` ∃U(U is the core).66

Returning to the question of CH, Steel grants that any ordinary kind of syn-

onymy is a stretch here: t(CHC) involves mathematical machinery unknown to

Cantor, but surely we don’t want to suggest that Cantor didn’t understand the 860

meaning of CH!67 Though the switch to ’legitimateT’ (Definition 11) replaced the

problematic ’synonymous’ in this context with provable equivalence, this is of

no immediately help here, because

ZFC 0 (CH ↔ t(CHC))68

That is, CH isn’t legitimate ZFC. But this isn’t really the question we should be

asking, since the existence of the core depends on an extendible cardinal, well 865

beyond the reach of ZFC on its own. For that matter, how does the universe

theorist, speaker of L∈, understand talk of the core in the first place?

To answer this question, recall Theorem 10 and the surrounding discussion.

The universe theorist understands an LMV claim ϕ by interpreting it inMG, and

the theorem tells her that the L∈ claim t(ϕ), interpreted inM, encodes the claim 870

that ’ϕ holds in the multiverse generated from me’. So consider the case of the

LMV claim ’there is a core’ as above. t(’there is a core’), interpreted inM, says

that MG thinks there is a core. So the universe theorist understands t(’there is

a core’) itself to say that the multiverse generated from her single universe – if

there were such a thing – would have a core. 875

This line of thought can be expressed directly in L∈ using W(·) from Theorem

5.

66In fact, we only need to add that ∃U(EXTU) for this to work. We’ve used the stronger as-
sumption because it’s Steel’s standard way of adding large cardinals to MV (see the parenthetical
comment after MV-1ϕ in §4).
67See footnote 58 of Maddy [2017], p. 314.
68See Proposition 44(1) in Appendix C.
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There is a core iff ∃r∀x(x ∈Wr ↔ ∀s(x ∈Ws))
69

This says that the core is a generic refinement of every generic refinement. Usuba’s

theorem can be reformulated to 880

Theorem 15. ZFC + EXT ` ’there is a core’.

In this sense, then, if we allow our universe theorist to augment ZFC to ZFC +

EXT, just as our multiverse theorist has augmented MV to MV + ∀U(EXTU),

she can see that the multiverse generated from her single universe – if there were

such a thing – would have a core. With this machinery in hand, our question can 885

be improved to

ZFC + EXT ` (CH ↔ t(CHC))?

But the answer is still no; CH isn’t legitimateZFC+EXT, either.70 Still more is

needed if CH is to be legitimized.

Addressing this challenge, Steel remarks that

One can think of [L∈] as the multiverse language, together with a 890

constant symbol V̇ for a reference universe. (Steel [2014], p. 167)

The idea is that the multiverse theorist might understand the universe theorist

simply as speaking of that reference universe; in other words, what the universe

theorist takes for the single universe, V,71 is really the interpretation of V̇ in the

extended multiverse language. But this only works if V̇ is given a definition in 895

LMV . Steel continues:

69Observe that this sentence merely says that Wr has no generic refinements, not that it is the
intersection of all the worlds. So Wr is a world that satisfies what Rietz calls the Ground Axiom,
but we may wonder if there are other worlds also satisfying it (Reitz [2007]). This is ruled out by
Usuba’s Downward Directed Ground theorem, which tells us the generic refinement relation is
downward directed; i.e., given Wr and Ws, generic refinements of the universe, there is some Wt
which is a generic refinement of both Wr and Ws.
70See Proposition 44(2) in Appendix C.
71We use V for the universe theorist’s unique world, in contrast with the variable V over the
multiverse theorist’s many worlds.
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If the multiverse has a core, then surely it is important, whether it

is the denotation of V̇ or not! Indeed, if there is an inclusion-least

world in the multiverse, why not use Ḣ to denote it, and agree to

retire V̇ until we need it? (Steel [2014], p. 169) 900

This is more than a little cryptic, but the suggestion seems to be that the multi-

verse theorist understand the universe theorist as talking about the core or even

that the universe theorist take the core to be her single universe (at least until the

need arises for something else). The universe theorist is being asked to agree that

there are no proper generic refinements of her single universe, that is, to agree 905

that ∀x∀r(x ∈Wr) or more succinctly, V = C.72 This does the trick:

ZFC + EXT + V = C ` (CH ↔ t(CHC))

(This follows from Theorem 17.) In fact, every statement ofL∈ is legitimateZFC+EXT+V=C,

potentially removing any worry about pseudo-questions! But why should the

universe theorist regard ZFC + EXT + V = C as a reasonable theory? In partic-

ular, why should she identify her universe with C? 910

Assuming, as we have been, that the available guides offer us no reason to

prefer some candidate foundational theories with large cardinals over the oth-

ers, there can be no reason to opt for V = C over all the rest, but there’s another

way to look at the role of the core in Steel’s thinking here. We’ve seen how, at

the beginning of the paper, he imagines two possible reactions ’for those who 915

. . . believe that the truth value of CH is not determined by the meaning we cur-

rently assign to the syntax of’ L∈, namely, ’trim back the current syntax’ or ’flesh

out the current meaning’ (Steel [2014], p. 154). We’ve replaced ’believing the

truth value of CH isn’t determined by the current meaning’ with the less-loaded

72This is known as the Ground Axiom in Reitz [2007], however we are using it to assert that the
universe is a solid bedrock in Reitz’s terminology. These can be seen to be equivalent by the
Downward Directed Grounds theorem.
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’taking "maximizing interpretive power" to be the only guide we have to for- 920

mulating foundational theories and ZFC + LCs to be all we can glean from this

guide’; and we’ve been exploring how to ’trim’ under this assumption – which

allows no reason to opt for the V = C. The ’fleshing out’ alternative comes up in

a moment, but for now, it’s important to note that there’s actually a intermediate

position in play here. 925

In Steel’s meaning-theoretic idiom, that intermediate position is the possibil-

ity that there’s more to the current meaning that we’ve so far appreciated, that

ZFC + LCs isn’t all that’s implicit there. In our less-loaded idiom, there might

be good reasons to favor some candidate foundational theories represented in

the multiverse over others. Though the complexities of ’trimming’ make it easy 930

to lose sight of this fact, the original motivation of the multiverse was ’to find

a neutral common ground on which to compare’ the various candidate theories

’without bias toward any’ (Steel [2014], p. 165). Steel’s thought was that at-

tending to the multiverse, placing all the candidate theories side-by-side, might

reveal hidden aspects of meaning, or, in our terms, uncover previously unno- 935

ticed reasons for preferring one to another candidate. He now points out that

attending to the multiverse has, in fact, revealed a new ’fundamental question’

(ibid., p. 169): does the multiverse have a core? The suggestion above, that the

universe theorist is talking about the core, is really the suggestion that thinking

about the core in the context of the multiverse gives us reason to prefer its theory 940

to the other candidates for our fundamental, foundational theory.

So far so good, but why should this be so, what makes the theory of C prefer-

able? Think of it this way. We’ve just recalled that Steel introduced the multiverse

as a way of drawing all the candidate theories together, to be viewed side-by-

side, on equal footing (’without bias’). What’s emerged from this exercise, from 945
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the pure mathematics of the situation, is that the candidate theories aren’t actu-

ally on a par – one is singled out as more fundamental. Furthermore, from the

perspective of that special theory, each of the other candidates is only a forcing

extension away. This means that a universe theorist working in the core can un-

derstand everything about alternative theories simply by studying what’s forced 950

by particular posets;73 in this sense, the entire multiverse of theories is accessible

to her. The question then arises: why not regard the core as the interpretation of

V̇? What would be lost by preferring the theory ZFC + EXT + V = C?

This is undeniably a provocative line of thought. Perhaps a compelling case

could be made for answering these questions affirmatively, though we won’t 955

attempt to fill one in here. But, if this could be done, it might be argued that

multiverse thinking would, in the end, reveal something important about L∈,

namely that all its sentences are legitimate, after all. Steel describes the situation

this way:

Perhaps . . . some future mathematics [will be] built around an un- 960

derstanding of the symbol V̇ that does not involve defining V̇ in

the multiverse language [i.e., as the core]. But at the moment, it is

hard to see what that is. (Steel [2014], p. 168)

Short of such a future, this would be a remarkable outcome: by openly facing the

possibility that some sentences ofL∈ are defective, by giving multiverse thinking 965

its due, Steel would end up dispelling the very concern that he started with.

As it happens, though, even this dramatic conclusion wouldn’t have the math-

ematical power it might appear to promise: it turns out that ZFC+ EXT +V = C

is a much less informative theory than one might have hoped. In the wake of

Usuba’s theorem, Steel74 alludes to work of the set-theoretic geologists, who 970

73We might think in terms of Kunen’s ’forcing over V’ in Kunen [2006], pp. 234-235, or ’forcing
over the Universe’ in Kunen [2011], pp. 281-282.
74Private correspondence, 2/19/17, cited with permission.
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have shown, for example, that V = C can’t settle CH. But this failure is just

the beginning:

Theorem 16. (Reitz [2007]) If V satisfies ZFC, then there is a class forcing extension

V[G] such that V[G] |= V = C.

In other words, a model of V = C can be generated from any model of ZFC. 975

Moreover, the generated model can be constructed in such a way as to preserve

any rank initial segment of the original universe. Or to put it the other way

’round, a model of ZFC + V = C might have as an initial segment, an initial

segment of any universe whatsoever. This suggests that assuming V = C pins

down very little about what V is actually like. 980

At this point, it seems unlikely that any more can be gleaned from the ’cur-

rent meaning’ of L∈, so Steel turns at last to the possibility that we might ’flesh

out’ that meaning in some principled way. Notice, by the way, that in our less-

loaded idiom, the contrast between ’revealing hidden aspects of the meaning’

and ’fleshing out the meaning’ is a distinction without a difference: both come 985

down to finding sound mathematical reasons to prefer one theory in the multi-

verse to others. In any case, Steel sees the line between ’revealing hidden aspects’

and ’fleshing out’ as having been crossed when we try to say more about the core.

We’ve just seen that the key role of the core here is to legitimize all sentences

of L∈: 990

Theorem 17. For each ϕ ∈ L∈, there is a ψ ∈ LMV such that

ZFC + V = C ` ϕ↔ t(ψ).

Proof. See Appendix C.1. �

As it happens, a number of familiar inner models could substitute for C in this

theorem – L, L[0#], the core model K – because each of these satisfies V = C.
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But, as we’ve seen (in §4), these don’t appear as worlds in Steel’s multiverse

due to their anti-large-cardinal effects. There is, however, a developing program 995

around an axiom candidate designed in the hope of overcoming this problem,

namely, V=Ultimate-L.75 This axiom implies V = C, 76 and if all goes as adver-

tised, it would also be consistent with all traditional large cardinals; in a sense

to be made precise, V=Ultimate-L would imply that the universe is as L-like as

possible without anti-large-cardinal effects. 1000

To this point, then, Steel has argued that V = C is implicit in the meaning

of L∈. But we’ve also seen that ZFC + LCs + V = C is too weak a theory to

settle CH, or much else. In stark contrast, V=Ultimate-L would be very powerful

assumption indeed – beginning, though by no means ending, with a solution to

the Continuum Problem:

ZFC + V = Ultimate-L ` CH

So, here at last we have Steel’s second option: assuming the Ultimate-L project

succeeds, rather than ’trimming back the syntax’ of L∈ to avoid asking pseudo-

questions, he proposes that we opt instead to ’flesh out’, to extend its meaning to

include V=Ultimate-L, that we move from ZFC + LCs + V = C to ZFC + LCs +

V=Ultimate L. Indeed something like this may have been what Steel had in mind 1005

in ’Gödel’s program’, before Usuba’s theorem: ’the multiverse may indeed have

a core, and this core may admit a detailed fine-structural analysis that resembles

Gödel’s L’ (Steel [2014], p. 178).

Steel presents no detailed case for this idea; presumably his reasons would

dovetail with those offered by other advocates of V=Ultimate-L. But for now, 1010

this remains speculative, as Steel clearly acknowledges:

75See Woodin [2017].
76Woodin [2017], Theorem 7.8.
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Perhaps the mathematics will turn out some other way. Perhaps

the multiverse has no core [written pre-Usuba], but some other,

more subtle structure. There are many basic open questions at

the foundations of set theory: the extent of generic absoluteness, 1015

the existence of iterable structures, the Ω-Conjecture, the form of

canonical inner models with supercompacts, and the properties of

HOD in models of determinacy, to give my own partial list. Our

path toward a stronger foundation will be lit by the answers to

such questions. (Steel [2014], p. 179) 1020

7. CAVEATS AND CONCLUSIONS

This completes our reconstruction of Steel’s multiverse project. We’ve done

our level best to tell the story as fully and persuasively as we can, but certainly

don’t pretend that the line of thought sketched here is air-tight at every turn. We

conclude with a brief look at some lingering concerns. 1025

The most troubling questions center on the assumption of Amalgamation. Re-

call that this axiom is essential to the turn of argument in §4: the failure of Amal-

gamation is what makes (the meta-mathematical surrogate for) Woodin’s multi-

verse unaxiomatizable; with Amalgamation, Steel’s axioms successfully axioma-

tize his natural toy models. One awkward question then is why we should insist 1030

on axiomatization in this strong sense.77 Steel is after a theory of sets and worlds

that represents the full range of candidate foundational theories. It’s obvious

that he needs axioms, but why wouldn’t it be sufficient to isolate a set of axioms

that captures this central idea well enough to generate a mathematically success-

ful theory, even if it wasn’t complete for some natural collection of toy models? 1035

77This requirement isn’t explicit in Steel [2014], but it seems implicit in his remark about Woodin’s
multiverse: ’it is not at all clear what its theory would be’ (Steel [2014], p. 170). (If ’axiomatiza-
tion’ in a looser sense were intended, why not MV-Amalgamation?) In any case, appeal to full
axiomatizabilty was the only way we could find to mount a principled case for Amalgamation.
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Without a satisfactory answer to this question, we have no reason to adopt the

axiomatizabilty requirement, and we’re left without a principled argument for

Amalgamation.

Unfortunately, Amalgamation can’t simply be jettisoned. Its involvement in

the mathematics of Steel’s theorizing goes far deeper than the question of ax- 1040

iomatizability: it’s essential to the translation function of Theorems 9 and 10

in §5, which could hardly be more fundamental. The history of set theory has

accustomed us to the notion that an axiom can be defending by appeal to its

mathematical benefits – these are so-called extrinsic justifications, going back to

Zermelo, endorsed by Gödel, now playing a central role in contemporary set- 1045

theoretic practice – so one thought would be to defend the addition of Amalga-

mation to MV by pointing to its welcome mathematical consequences.

The trouble with this approach is that MV isn’t a pure mathematical theory;

it’s a meta-mathematical theory – a piece of applied mathematics intended to

provide representations for all candidate foundational theories – and for applied 1050

mathematical theories, mathematical benefits aren’t enough, we need represen-

tational accuracy.78 Not perfect accuracy, of course, but whenever simplifications

or idealizations are employed, we have to have good reason to believe that no

relevant distortions are being introduced.79 That’s what we don’t have in this

case. Presumably the candidate foundational theories are what they are inde- 1055

pendently of our theorizing about them. When Steel narrows his multiverse

theory by adding Amalgamation, what reason do we have for thinking that he

hasn’t ruled out some perfectly good candidates?

78For comparison, there would be mathematical benefits to describing fluid flow with something
more tractable than the Navier-Stokes equations, but as it happens, the world just isn’t that coop-
erative.
79Sticking to fluid dynamics for comparison, applied mathematicians who assume that fluids are
continuous present detailed analyses of when and why this idealization is benign.
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Finally, at least in passing, we should flag the assumption that ’maximizing

interpretive power’ is the only guide we have to extending our theory of sets. 1060

Though Steel has good reasons for this position, it bears noting that there are dif-

fering opinions in the field, particularly among supporters of forcing axioms.80

But ’noting’ is enough for our purposes – this obviously isn’t the place to engage

that debate!

So, in sum, what have we learned from Steel’s discussion of his multiverse? 1065

The concluding argument for V=Ultimate-L more-or-less coincides with what

its current defenders offer as a straightforward case for adding it directly as a

new axiom to some extension of ZFC. What distinguishes Steel’s project is the

path he travels to get there: after taking seriously the possibility that there are

no grounds on which to extend past ZFC + LCs, he explores his multiverse lan- 1070

guage and theory; the mathematics itself leads him to ask whether the multi-

verse has a core, and post-Usuba, we find that it does; Steel then suggests that

V = C, which returns us to universe thinking about the theory of that structure

and the debate over V=Ultimate-L. Metaphysically, we’ve seen (in §2) that much

of the current multiverse discussion involves a robust ontology of sets and uni- 1075

verses. Here Steel presents a stark alternative: a linguistically defined multiverse

intended to capture the full range of candidates for extending ZFC + LCs. His

goal isn’t metaphysical truths about an abstract realm, but a fair adjudication

of the whether CH is a viable set-theoretic question. Though the discussion is

couched in terms of ’the current meaning assigned to L∈’, we’ve argued that 1080

this is inessential, that the substance of Steel’s thought can be formulated more

effectively in philosophically innocent mathematical terms. By these means, we

steer away from the vagaries of mathematical meaning, truth, and existence and

80See, e.g., Magidor [201x], Todorcevic [201x]. For a broader discussion, see Schatz [2019].
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toward the methodologically central questions: how exactly do we select our the-

ories and by what right? At that point, Steel’s approach offers something rare: a 1085

novel and distinctive approach to answering them.81
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APPENDIX

The goal of this appendix is to fill in the mathematical aspects of the story

we’ve told above. In parts A and B, we prove two claims from §4: that MV is

sound and complete for the natural class of models and that no such theory is

available for Woodin’s multiverse. In part C, we define the translation function 1180

t from LMV to L∈, and prove the key results (Theorem 9, Theorem 10, and The-

orem 12 from §5, and Theorem 17 from §6). In some cases, we provide proofs

http://logic.harvard.edu/efi.php#multimedia
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for explicit claims of Steel [2014]; in others, both claim and proof are part of our

reconstruction. We don’t believe any of this material has previously appeared in

print. 1185

Because our target audience includes mathematically-informed philosophers

as well as set theorists, we have included more details and examples than usual.

Anyone acquainted with forcing, large cardinals, and ultrapowers at the level

of Kunen [2011] and the first seventeen chapters of Jech [2003] should be well-

served. Citations to ancillary resources have also been included where they 1190

might be helpful. Our hope is that this explicit treatment will serve as a foun-

dation for future philosophical work on the generic multiverse and multiverse

theories more generally.

In overview, our proof in part A of the soundness and completeness of MV

begins with a sketch of a general framework for a particular class forcing over 1195

arbitrary countable models of ZFC. This framework was suggested by an anony-

mous referee and has allowed us to shorten the appendices signficantly. In part

B, we prove that Woodin’s generic multiverse is not amenable to a similar sound-

ness and completeness theorem: using a result Woodin kindly permitted us to in-

clude, we show that Woodin’s generic multivese – when generalised to arbitrary 1200

countable models – has a theory from which the full theory of analysis can be

computed. Thus, it has no recursive axiomatisation. As in the previous section,

we start by considering the more elementary case of countable transitive models,

then generalize to arbitrary models with an augmentation of the original argu-

ment. Finally, in part C, we give a full definition of Steel’s translation function t 1205

and prove that it works as claimed in Steel [2014]. The appendix ends with the

proof that adding V = C to ZFC is enough to remove all threat of illegitimacy

from sentences of L∈.

A. Soundness and Completeness for MV.



A RECONSTRUCTION OF STEEL’S MULTIVERSE PROJECT 55

A.1. Preliminaries. 1210

In this section we establish that MV is sound and complete with respect to

a natural class of models (see Theorem 8).82 Before we launch into the main

proofs, we first provide some background on a couple of slightly exotic elements

that we need: class forcing to collapse all cardinals; and forcing over ill-founded

models. First we discuss some class forcing basics.83 Our goal is to show how to 1215

collapse all of the cardinals in a model while retaining some ability to refer to the

ground model. We make use of this in the proof of Soundness and in defining

the translation function.

We work for the moment with transitive models. Let P = Col(ω,<Ord).

Loosely following Kunen [2011], we work in a forcing language FLP(V̌) = 1220

{V̌,∈, σ}σ∈VP which expands L∈ with constant symbols from VP and an extra

1-place relation symbol V̌ = {〈x̌, 1〉 | x ∈ V}. It should be clear that V̌ denotes V

in any generic extension; i.e, Val(V̌, G) = V whenever G is P-generic over V. To

deal with V̌ in the definition of the forcing relation, we add an extra clause. For

a P-name σ and p ∈ P, we let 1225

p  σ ∈ V̌ iff {q ∈ P | ∃x ∈ V q  σ = x̌} is dense below p.

V̌ gives us sufficient ability to refer to the ground model in the context of the

forcing relation.

If we force using P, then we cannot preserve all of ZFC. In particular, it is easy

to see that powerset must fail. However, the rest of the axioms survive. Indeed, 1230

we can even preserve uses of replacement which make use of V̌. Let ZFC− be

ZFC without the powerset axiom. For Ṅ a one-place relation symbol, let L∈(Ṅ)

be the expansion of L∈ with Ṅ. Let ZFC−(Ṅ) be ZFC− with Ṅ allowed in the

Replacement and Separation schemata.

82We thank Gabriel Goldberg whose mathematical suggestions have allowed us to immensely
simplify these appendices.
83For a detailed discussion see Friedman [2000].
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Fact 18. Let M be a transitive model of ZFC. Let P = Col(ω,<Ord). Then 1235

(1) If G is P-generic over M, then

〈M[G], M,∈〉 |= ϕ((τ0)G, ..., (τn)G) ⇔ ∃p ∈ G M |= “p  ϕ(τ0, ..., τn)”

where ϕ(v0, ..., vn) is a formula of FLP(V̌).

(2) P ZFC−(V̌).

This can be established by showing that P is pretame. The proof is identical

to the proof of Lemma 2.26 in Friedman [2000]. Alternatively, it can be shown 1240

quite directly by using a couple of facts about P. First, the homogeneity of P

and its factors can be used to show that whenever p P ϕ(σ0, ..., σn), then p �

α P�α ϕ(σ0, ..., σn) where α is the supremum of those β such that q(β) 6= > for

some q ∈ P in the transitive closure of some σi for some i ≤ n. This is enough to

ensure that definability holds. Second, since P is essentially an Ord-length finite 1245

support product of Ord-cc forcings, every anti-chain in P is set-sized. This – in

conjunction with the previous fact – allows us to obtain a version of the mixing

lemma which then allows us to prove a simple modification of the standard proof

that Replacement is forced.84

Now we consider forcing over possibly ill-founded models. We’ll just describe

some standard results.85 LetM be a countable model of ZFC. Let P be a poset

which is such that either: P = (Col(ω,<))M; or P ∈ M. Let MP be the P-

names as defined withinM. We say G ⊆ P isM-generic if G is a filter and for

all dense (D ⊆ P)M with D ∈ M, we have G ∩ D 6= ∅.86 We define MP/G

as follows. Let the domain of MP/G be the set of [σ]MG where σ ∈ MP and

84For example, see page 254 of Kunen [2011].
85For a detailed account see Corazza [2007].
86We follow Kunen’s notation of relativisation here (see page 141 in Kunen [2006]). Thus for
M = 〈M, E〉 and ϕ ∈ L∈ we write ϕM to indicate the result of replacing ∈ by E and relativising
all quantifiers to M. Note also that G ∩ D doesn’t capture our strict intention, since G is a set
in V (the ambient universe) while D ∈ M which might not have ∈ as its membership relation.
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[σ]MG = {τ | (τ ∈ VP)M ∧ τ ∼G σ} where τ ∼G σ iff ∃p ∈ G (p  τ = σ)M. Let

the membership relation ofMP/G, denoted ∈MG , be such that for σ, τ ∈ MP we

have

[σ]MG ∈MG [τ]MG ⇔ ∃p ∈ G (p  σ ∈ τ)M.

And for for V̌ we let 1250

[σ]MG ∈MG [V̌]MG ⇔ ∃p ∈ G (p  σ ∈ V̌)M.

Note that versions of the truth and definability lemmas still hold.

Fact 19. For ϕ(v0, ...vn) ∈ FLP(V̌) and τ0, ..., τ1 ∈ MP we have

〈MP/G,M,∈MG 〉 |= ϕ([τ0]
M
G , ..., [τn]

M
G ) ⇔ ∃p ∈ G (p  ϕ(τ0, ..., τn))

M.

Moreover, a representation [Ġ]MG of G exists inMP/G.

Fact 20. G = {p | (p ∈ P)M ∧ ([ p̌]MG ∈ [Ġ]MĠ )M
P/G} where Ġ = {〈 p̌, p〉 | p ∈

P}M. 1255

IfMP/G is well-founded, we’ll follow standard conventions and assume that

it has been collapsed into a transitive model. But in general this will not be the

case. IfMP/G is ill-founded it is is essentially an uncollapsed ultrapower and

so it is not strictly the case thatM is a generic refinement ofMP/G. IndeedM

is not literally a submodel ofMP/G. However, we do have the following: 1260

Fact 21. The embedding iMG :M→MP/G where for all x ∈ M

iMG (x) = [x̌]MG

Strictly, we should say for all D ∈ Mwith (D is dense in P)M there is some g ∈ G with g E D (i.e.,
(g ∈ D)M. For convenience, we’ll adopt the sloppy notation since it should cause no confusion.
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is such that MP/G thinks that it is the generic extension of iMG “M by iMG “G over

iMG (P).

With this in mind, it is convenient to modifyMP/G in such a way that it does

containM as a submodel. 1265

Definition 22. Let Mult[G] be the result of replacing iMG “M by M; i.e., let the

domain ofMult[G] be

(MP/G\iMG “M) ∪M

and for x, y ∈ Mult[G], let the membership relation, ∈G, be such that

x ∈G y⇔(x, y ∈ M∧ (x ∈ y)M)∨

(x, y ∈ MP/G ∧ x ∈MG y)

(x ∈ M∧ y ∈ MP/G ∧ iMG (x) ∈MG y).

Then we are able to ensure that (from the perspective ofMult[G])Mult[G] is a

generic extension ofM in the conventional sense of say Kunen [2006].

Proposition 23. (1) OrdM = OrdMult[G] andMult[G] is an end extension ofM.87
1270

(2)Mult[G] thinks it is a generic extension ofM by G over P; i.e., x ∈ Mult[G] iff

there is some τ inMP such that (Val(τ, [Ġ]MG ) = x)Mult[G].

(3) There exists r ∈ Mult[G] such that iMG “M = (Wr)Mult[G] if P ∈ M.

IfM is transitive, let us use the standard notationM[G] to denote the {Val(σ, G) | σ ∈

MP}.88 Turning our attention back to the case where P = (Col(ω,<))M, we see 1275

that 〈Mult[G],M,∈G〉 is able to define all of the generic refinements ofMult[G].89

87N = 〈N, F〉 is an end extension ofM = 〈M, E〉 iff whenever xFy ∈ N ∩M, x ∈ M.
88This only makes sense ifM is well-founded.
89Note that since this is a class forcing, we cannot make use of Laver and Woodin’s theorem.
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Proposition 24. LetM |= ZFC and G be Col(ω,<Ord)M-generic overM. Then for

all α ∈ OrdM

(1) 〈Mult[G],M,∈G〉 |= ZFC−(M)

(2) G � α ∈ M; 1280

(3) (M[G � α])Mult[G] is definable in the model 〈Mult[G],M,∈G〉.

(4) For all α ∈ OrdM and all r ∈ M[G � α], (Wr)M[G�α] is definable in

〈Mult[G],M,∈G〉.

A.2. Soundness.

With this in hand, we can now provide a general definition of Steel’s generic

multiverse. 1285

Definition 25. SupposeM is a model of ZFC and G is Col(ω,<Ord)M-generic

overM. We letMG be the model with sets fromMult[G] and whose worlds are

those N such that there exists α ∈ OrdM and r ∈ M[G � α] such that90

x ∈ N ⇔ 〈Mult[G],M,∈G〉 |= x ∈ (Wr)
M[G�α].

Recall that – by our definitions – ifM is transitive, thenMult[G] =M[G] and

observe that if N is a world inMG, then 〈Mult[G],M,∈G〉 thinks that N [H] = 1290

M[G � α] for some N -generic H.91 We now show thatMG provides a model of

our MV. This is the required fact for establishing soundness.

Theorem 26. (Steel) Suppose M is a model of ZFC and G is (Col(ω,<Ord))M-

generic overM. ThenMG |= MV.

90We thank Goldberg for suggesting the framework which allows for this simple definition.
91We don’t need to expand the signature to accommodate N since Laver and Woodin’s theorem
guarantees that N is definable fromM[G � α] in 〈Mult[G],M,∈G〉.
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Proof. By Fact 18 we see that 〈M[G],M,∈G〉 |= ZFC−(M). Then using Propo- 1295

sition 24, it can be seen thatM[G � α] and all of its generic refinements are de-

finable in 〈Mult[G],M,∈G〉. Moreover, from the perspective of 〈M[G],M,∈G〉

each of these worlds is transitive. This is sufficient for us to carry out the rest of

the proof within 〈Mult[G],M,∈G〉.

(MV-0) This holds by definition. (MV-1ϕ) Let ϕ be an axiom of ZFC and let 1300

N be some world inMG. Then N |= ZFC by definition. We note that (MV-2)

and (MV-3) are entailed by (MV-7), so we’ll cover the former two with a proof

of the latter at the end. (MV-4) This holds by the definition ofMG.

(MV-5: Extension) Suppose N is a world and P ∈ N is a poset. Fix Q ∈

N and H, which is Q-generic over V, such that N [H] = M[G � α] for some 1305

α ∈ OrdM. Fix β ∈ OrdM such that β > |P|N . Then we may fix a complete

embedding σ : P→ Col(ω, [α, β) ) with σ ∈ N .92 Then we see that J = σ−1(G �

[α, β)) is P-generic overM[G � α]; and since N ⊆ M[G � α], J is also P-generic

over N . Finally since N ⊆ N [J] ⊆ M[G � β], we see by the quotient lemma

that there is some R ∈ N [J] and K, which is R-generic over N [J], such that 1310

M[G � β] = N [J][K].93 Thus N [J] is a generic refinement of M[G � β] and is

thus, a world.

(MV-6: Refinement) SupposeN ∈MG andN = V [J] for J, P-generic over V .

Since N ∈ MG, we may fix Q ∈ N and H, Q-generic over N , such that

N [H] =M[G � α]

for some α. But then M[G � α] = V [J][H] is a generic extension of V by the 1315

iteration lemma and so V ∈ MG.94

92This can be obtained using the embedding of Proposition 10.20 of Kanamori [2003].
93For the quotient lemma see, for example, exercises VII(D4) and VII(D5) in Kunen [2006].
94See Proposition 10.9 of Kanamori [2003].
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(MV-7: Amalgamation) Let N and V be worlds such that N [H] =M[G � α]

and V [I] =M[G � β] where H and I are N -generic and V-generic respectively

and α, β ∈ OrdM. Without loss of generality, suppose that α ≥ β. Then

N [H] =M[G � α]

=M[G � β][G � [β, α)]

= V [I × G � [β, α)].

�

A.3. Completeness. Now we show that any countable model of MV is of the de-

sired natural form. This is the fact required for the completeness proof.

Theorem 27. (Steel) LetW be a model of MV satisfying extensionality for worlds with 1320

M ∈ W and |W| = ω. Then for some Col(ω,<OrdM)-generic H

W =MH.

Proof. We shall define a sequence of generics 〈Gi | i ∈ ω〉 and indices 〈ni | i ∈ ω〉

which will allow us to capture every world inW as a generic refinement. Then

using Lemma 28, we will use 〈Gi | i ∈ ω〉 to define our desired H. Let 〈κn | n ∈ ω〉

be a sequence ofM-cardinals which is cofinal inM. Let 〈Nn | n ∈ ω〉 enumerate 1325

the worlds inW . Let

• Let n0 be least such that there exists Col(ω, κn0)-generic G overM where

N0 is a ground ofM[G] ∈ W . Let G0 be such a G.

• Let ni+1 be least such that there exists Col(ω, [κni , κni+1))-generic G over

M[∏j≤i Gj] where Ni+1 is a ground ofM[∏j≤i Gj × G] ∈ W . Let Gi+1 be 1330

such a G.
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It can be seen using the universality properties of collapse forcing and the ax-

ioms of MV that this sequence is well-defined in the sense that such an ni and

Gi exist for all i ∈ ω. 〈Gi | i ∈ ω〉 can then be used to define a sequence

〈G∗α | α<OrdM〉 where each G∗α is Col(ω, {α})-generic overM and every prod- 1335

uct of a finite subsequence is generic overM. We then use Lemma 28 to obtain

H which is Col(ω,<OrdM)-generic overM and such that for all α ∈ OrdM

M[H � {α}] =M[G∗α ].

Claim. MH =W .

Proof. (⊆) Suppose N ∈ MH. Fix N -generic J such that N [J] = M[H � α] for

some α ∈ OrdM. Then we see that since M[H � α] ∈ W by construction, we 1340

must have N ∈ W by Refinement. (⊇) Suppose N ∈ W . Then N = Ni for

some i ∈ ω. Then we see from our construction that Ni is generically extended

byM[H � κni ]. Thus, Ni ∈ MH. �

�

The following lemma allows us to take a countable set of finitely mutually 1345

generic sets and make a finite support product of equivalent generics over ho-

mogeneous posets. It’s a generalization of a theorem of Hamkins. 95

Lemma 28. LetM be a countable model of ZFC. Let 〈Pα | α ∈ OrdM〉 be definable in

M where each Pα ∈ M is weakly homogeneous according toM. Let 〈G∗α | α ∈ OrdM〉

be finitely mutually generic; i.e., such that for all finite partial functions f : ω ⇁ OrdM, 1350

∏
i∈dom( f )

G∗f (i) is ∏
i∈dom( f )

P f (i)-generic overM.

95See Theorem 13 of [Hamkins, 2015]. The setting of that theorem is the concrete context of adding
Cohen reals and, as such, it may be helpful for the reader to consult that proof first.
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Then there exists H such that:96

(1) H is ∏
f in
α∈OrdM Pα-generic overM; and

(2) M[H � {α}] =M[G∗α ] for all α ∈ OrdM.

Proof. We take an enumeration of the dense sets of P = ∏
f in
α∈Ord Pα which are

definable inM and and a countable enumeration of the ordinals ofM and use 1355

this to construct our generic in the fashion of the proof of the Baire category

theorem. Along the way, we exploit the homogeneity assumption to make some

adjustments to the elements of the 〈Gα | α ∈ OrdM〉 sequence. Let 〈Dn | n ∈ ω〉

enumerate the dense subsets of P which are definable inM.

Let f : ω ∼= OrdM enumerate the ordinals of M . We use this to rearrange 1360

the sequence 〈Gα | α ∈ OrdM〉 into a sequence of length ω which will allow us

to define the generic by constructing an ω-sequence of points which intersects

every dense set. To implement this and make the following more readable, we

let P†
n = P f (n); P† = ∏

f in
n∈ω P†

n and G†
n = G∗f (n) for all n ∈ ω. Then for p ∈ P, let

p†(n) = p( f (n)); and for n ∈ ω let D†
n = {p† | p ∈ Dn}.97 We’ll define sequences 1365

〈H†
n | n ∈ ω〉 and 〈 p̄n | n ∈ ω〉 by recursion such that for all n ∈ ω:

• M[H†
n] =M[G†

n]; and

• p̄n ∈ D†
n ∩∏

f in
n∈ω H†

n and p̄n ≤ p̄m for all m < n.

We then let Hα = H†
f−1(α)

for all α ∈ OrdM and H = ∏
f in
α∈OrdM Hα. This will suffice

for the lemma. To obtain this we just need to define these sequences such that 1370

for all n ∈ ω, p̄n ∈ D†
n, p̄n � (n + 1) ∈ H†

0 × ...× H†
n whereM[G†

n] =M[H†
n] and

p̄n ≤ p̄m for all m < n. Suppose we’ve done this up to n. We define p̄n+1 and

H†
n+1 as follows. First we note that there is some p̄ ≤ p̄n such that p̄ ∈ D†

n+1 and

96I’m using Kunen’s notation for infinite products with finite support; i.e.,
f in

∏
n∈ω

Pn = { p̄ ∈ ∏
n∈ω

Pn | |{n ∈ ω | p̄(n) 6= 1Pn}| < ω}.

97It’s probably worth observing that P† cannot be defined inM, while ∏i<n P†
i ∈ M for all n ∈ ω.
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p̄ � (n + 1) ∈ H†
0 × ...× H†

n. To see this observe that

D∗ = {q ∈ P†
0 × ...×P†

n | ∃q̄ ∈ D†
n+1 (q̄ � (n + 1) = q ∧ q̄ ≤ p̄n)}

is dense below p̄n � (n + 1). Thus, we may fix some p ∈ D∗ ∩ (H†
0 × ...×H†

n) and 1375

thus some p̄ ∈ P† witnessing that p̄ ∈ D∗. Let p̄n be such a p̄ ∈ P†. Now it might

not be the case that p̄n ∈ H†
0 × ...× H†

n × G†
n+1. So using the weak homogeneity

of Pn+1, fix σ : P†
n+1
∼= P†

n+1 such that σ( p̄n(n)) = g for some g ∈ G†
0 . Then let

H†
n+1 = (σ−1)“G†

n+1. This ensures that the sequences have the desired properties

and the result follows. � 1380

A.4. Main Theorem. The soundness and completeness theorems now follow eas-

ily.

Theorem 8. For all ϕ in the multiverse language, the following are equivalent:

(1) MV ` ϕ

(2) IfM is a countable model of ZFC, thenMG |= ϕ, where G is Col(ω,<Ord)M- 1385

generic overM.

Proof. (1 → 2) Suppose MV ` ϕ andM is a countable model of ZFC. Then by

Theorem 26, we see thatMG |= ZFC and so by (1) and the soundness theorem,

M |= ϕ.

(2 → 1) Suppose W is an arbitrary model of MV. Taking a Skolem hull if 1390

necessary, we may assume thatW is countable. Then by Theorem 27W =MG

for some Col(ω,<Ord)M-generic overM. Thus, by (2) we see thatW |= ϕ and

by the completeness theorem, we have MV ` ϕ. �

B. Unaxiomatisability of VM .

In this section, we show that Woodin’s generic multiverse – unlike Steel’s – is 1395

not amenable to axiomatisation. First recall the following theorem of Usuba.
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Theorem 29. (Usuba) For all r0, r1 there exists s such that

Ws ⊆Wr0 ∩Wr1

Less formally, this tells us that when V is a generic extension of U0 and U1,

then V is a generic extension of some U2 ⊆ U0 ∩ U1. Now note the following

Corollary of Theorem 29: 1400

Corollary 30. Suppose N is a countable transitive model of ZFC. Then N ∈ VM iff

there exists r ∈ M, P ∈ (Wr)M and P-generic G over (Wr)M, such that

N = (Wr)
M[G].

In other words, VM is the set of ctms N accessible by a generic refinement

followed by a generic extension from M. We use this fact to define a provisional

version of Woodin’s generic multiverse adapted to the non-well-founded setting. 1405

The obvious way to attempt to form VM over a possibly ill-foundedMwould be

just use the corollary above withM instead of transitive M. However, this leads

to problems. For example, suppose M is transitive; P, Q ∈ M are posets; G is P-

generic over M and H is Q-generic over M[G]. Then G×H is P×Q-generic over

M and importantly, M[G][H] = M[G× H]. However, the situation is different if 1410

we use the ill-founded method above. IfM is ill-founded, P, Q ∈ M are posets;

G is P-generic overM and H is Q-generic overM[G], then we do get that G×H

is P×Q-generic overM; but in generalM[G][H] is merely isomorphic and not

identical toM[G× H].

We address this problem by identifying – for any modelM of ZFC – a canon- 1415

ical structure that is simply definable overM and from whichMmay be recov-

ered up to isomorphism. These structures will be used to represent the worlds
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of our generalised generic multiverse. This definition is due to Woodin who has

kindly allowed us to include it in our paper.

ForM = 〈M,∈M〉 a countable model of ZFC, consider the structure

〈OrdM,∈M, OrdRel(M)〉

where 1420

OrdRel(M) = {p ∈ M |M |= p ⊆ Ord×Ord}

is the set of ordinal-domain relations according toM. Call this the ord-structure

ofM. We claim that there is only one model of ZFC up to isomorphism with this

ord-structure. To see this supposeN = 〈N,∈N 〉 is a countable model of ZFC that

has the same ord-structure asM. Let π : M→ N be defined as follows. For each

x ∈ M, fix Ax ∈ OrdRel(M) be such thatM thinks that the transitive collapse 1425

of Ax is the transitive closure of {x}. Let π(x) be the ∈N -greatest element of

what N thinks is the transitive collapse of Ax. This makes sense since Ax ∈

OrdRel(M) = OrdRel(N ). We can then see that π is an isomorphism but we’ll

just show that π is an injection as the rest of the proof is similar. Suppose that

π(x) = π(y). Then N thinks that the transitive collapse of Ax is the transitive 1430

collapse of Ay. This means that there is some f ∈ N such that N thinks that

f : Ax ∼= Ay. And since it is clear that f ∈ OrdRel(N ) = OrdRel(M), we see

thatM also thinks that the transitive collapse of Ax is the transitive collapse of

Ay. Thus, x = y.

Now we can generalise the generic multiverse to the case of ill-founded mod- 1435

els. Recall that we have set up a forcing definition for ill-founded models such

that generic extensions literally contain their grounds as submodels. Thus, it is

easy to see that every world in the generic multiverse uses the same set of ob-

jects for ordinals and has the same ordering upon them. This means that we can
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represent each world N in the multiverse by OrdRel(N ) as that is the only part 1440

of the ord-structure which varies.

Definition 31. Let VM be the set of OrdRel(N ) for which there exists r ∈ M,

P ∈ (Wr)M, P-generic G over (Wr)M such that

N = ((Wr)
M)ult[G].

Now we might worry that since we are representing worlds by sets of ordinal-

domain relations, we are restricted to only being able to compare such relations 1445

between worlds and not arbitrary sets in those worlds. This is – in general – cor-

rect and appears to be forced upon us by our use of ill-founded models. How-

ever, much can still be recovered. For example, if we start with a countable tran-

sitive model M, then we can recover the Woodin’s original generic multiverse by

taking a model N for each world in the multiverse and then collapsing each of 1450

those models into transitive models.98

In the more general case of ill-founded models, we cannot perform this col-

lapse. However, we can still unambiguously identify many sets across different

worlds. We illustrate this with a couple of examples. Suppose N0 and N1 are

in VM where M is ill-founded. First, suppose x ∈ LN0 . Then let α ∈ OrdN0
1455

be such that N1 |= Enum(x, α) where Enum(v0, v1) a formula of L∈ which says

that x is the αth set in the canonical enumeration of L and this formula abso-

lute for L. Then it is clear that x should be identified with that y ∈ N1 where

N1 |= Enum(y, α). Second we note that if X0 ∈ N0 is what N thinks is a family

of ordinal-domain relations, then we can check whether X0 is represented in N1 1460

by asking whether there is some X1 ∈ N1 such that for all p ∈ OrdSet(N0) =

98The extra collapse step is required since we are using our ultrapower approach to forcing.
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OrdSet(N1) such that

N0 |= p ∈ X0 ⇔ N1 |= p ∈ X1.

This allows us to – so to speak – find the reals of one world in any other, if

they are present. We can then generalise this to compare families of families of

ordinal-domain relations; and we can continue iterating this idea along the well- 1465

founded part of OrdM, but not beyond. Even in the case where our generating

model M is not an ω-model this gives us more than enough agreement to be

able to carry out the following argument.

B.1. VM is unaxiomatisable.

We now show that there cannot be a recursive axiomatization of VM. These 1470

results are due to Woodin who has kindly allowed us to include them in this

paper. Our strategy is to demonstrate that – in fact – the true theory of arithmetic

can be obtained from the theory of any VM! To do this we show that the real

ω can be defined in any such VM - even though its version of ω may be non-

standard. We then define a translation which gives us the required reduction. 1475

Given a countable modelM of ZFC, we shall suppose below – without loss of

generality – that the real Vω is a submodel of the well-founded part ofM.

Lemma 32. (Woodin) ForM an arbitrary (and possibly ill-founded) countable model

of ZFC, there is a formula ϕω ∈ L∈ such that for all x ∈ ωM

x ∈ ωV ⇔ VM |= ϕω(x).

Proof. Our strategy is as follows. We first show that in VM, there exist reals c, d ∈ 1480

(2ω)M which instantiate an alternating pattern which has ωV-many alternations.

We call such a pair an ω-pair. We then observe that there is a formula ϕalt which

when given reals c, d ∈ (2ω)M can identify how many alternations have occurred
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according toM. From the perspective of V, this could be a non-standard number

of alternations. We then use ϕalt to define a formula which identifies the real 1485

natural numbers.

To see that an ω-pair exists in VM, let 〈Dn〉n∈ω enumerate (in V) the subsets

of P = (2<ω)M which are dense according toM. We define c and d by recursion

as follows. Let c0 ∈ M be such that M |= c0 ∈ D0 and let p0 be the empty

sequence. 1490

Let dn ∈ M be such that the following are satisfied inM:

• dn ∈ Dn; and

• dn = dan−1san 〈1〉aqn+1 where sn is a sequence of length lh(cn) which con-

stantly outputs 0 and where we let dn−1 be the empty sequence if n = 0.

Let cn+1 ∈ M be such that the following are satisfied inM: 1495

• cn+1 ∈ Dn+1; and

• cn+1 = can tan 〈1〉apn+1 where tn is a sequence of length lh(qn) which con-

stantly outputs 0.

It should then be clear that the the sequences 〈cn〉n∈ω and 〈dn〉n∈ω can be used to

define Cohen reals forM. The following diagram might be helpful. 1500

c c0 0’s 1 p1 0’s 1 p2 . . .

d 0’s 1 q0 0s 1 q1 0’s . . .
Since these sequences clearly yieldM-generics, it can be seen that c =

⋃
n cn ∈

2ω and d =
⋃

n dn ∈ 2ω are both represented in VM. We now define ϕω. But

first we let ϕ∗alt(x, c, d) be a formula in the language of arithmetic with two func-

tion parameters which says that there is some β-function with domain x tracking 1505

some of the alternating pattern of 0’s which could occur between c and d as out-

lined above. So if we were working in the standard model of arithmetic N, then

〈N, c, d〉 |= ϕ∗alt(n, c, d) holds when at least n blocks of 0’s occur in the pattern

described above.
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Then let ϕalt(x, c, d) be the standard translation of ϕ∗alt(x, c, d) from the lan- 1510

guage of arithmetic into the language of set theory. This means that if c, d ∈

(2ω)M then we’ll haveM |= ϕalt(x, c, d) iffM thinks there are at least x ∈ ωM

many blocks of 0’s occurring as in the diagram above, where x could – in general

– be nonstandard. Note also that since ωM = ωN for all worlds N , we’ll have

M |= ϕalt(x, c, d) iff VM |= ϕalt(x, c, d). In this situation, let us say that x is cap- 1515

tured by c and d in the sense that there at least x many alternations in the pattern

instantiated by c and d. We then let ϕω(x) say that for all c, d ∈ 2ω

• if ∀y(ϕalt(y, c, d)→ ∃z(z > y ∧ ϕalt(z, c, d))),

• then ϕalt(x, c, d).

Informally, this says that x is captured by every pair c, d that tracks an alternation 1520

which has a limit length.

Claim. For all x ∈ ωM

x ∈ ωV ⇔ VM |= ϕω(x).

Proof. (⇒) Suppose x ∈ ωV . Suppose that c, d ∈ VM support an alternation

of limit length, then the length of the alternation cannot be finite, so x must be

captured by c and d. (⇐) Suppose x /∈ ωV . Then x ∈ ωM and must be non- 1525

standard. Work in VM. Fix an ω-pair c, d in VM. Then it can be seen that x is

not captured by c and d since they only capture V-finite naturals. �

�

Lemma 33. (Woodin) There is a recursive function f : ω → ω such that for all count-

able modelsM of ZFC and all sentences ψ in the language of arithmetic, we have 1530

N |= ψ ⇔ f (ψ) ∈ Th(VM)

where N is the standard model of arithmetic.
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Proof. Using Lemma 32, we can define ω with a formula ϕω(v0) ∈ LMV in the

VM for any countableM. For a formula ψ from the language of arithemetic, we

let f (ψ) be the result of: first using the standard translation of arithmetic into set

theory; and then relativising all the quantifiers using the formula ϕω(v0). � 1535

With this in hand, we are able to establish the main result of this section.

Theorem 34. (Woodin) There is no recursive T ⊆ LMV such that for all ϕ ∈ LMV

T ` ϕ⇔ ∀M(|M| = ω ∧M |= ZFC → VM |= ϕ).

Proof. Suppose not and fix such a recursive T. Let f be the recursive function

given by Theorem 33. Then we see that

ϕ ∈ Th(N)⇔ ∀M (|M| = ω ∧M |= ZFC→ VM |= f (ϕ))

⇔ T ` f (ϕ).

But this means that Th(N) can be computed from T which means that T is not

recursive. �

C. The translation. 1540

In this section, we provide a definition of the Steel’s translation function and

show that it works.99

Definition 35. Assume M is an inner model of ZFC.

• A triple 〈r, P, G) defines a world U relative to M if (Wr)M is defined, P is a

poset in (Wr)M, and G ⊆ B is a (Wr)M-generic ultrafilter such that 1545

U = (Wr)
M[G].

99We thank Goldberg for providing this simplified approach to the proof. Our original strategy
provided a direct proof of Theorem 9 from the theory MV. However, the strategy was extremely
syntactic and difficult to read.
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• Let XM denote the class of triples that define some world relative to M.

• Let∼ be the equivalence relation defined on XM by x ∼ y if x and y define

the same world.

• Let SM be the class of equivalence classes of ∼ using Scott’s trick.

The following definition is carried out in the multiverse language. 1550

Definition 36. Let f be the function sending a pair of worlds 〈M, U〉 to the ∼-

equivalence class in SM of triples that represent U relative to M.

Proposition 37. MV proves that f is a total function.

Proof. Suppose U and M are worlds. Using Amalgamation fix a world U∗ such

that U and M are both grounds of U∗. Then by the Downward Directed Grounds 1555

theorem in U∗ fix U† such that U† is a ground of both U and M. Thus there

exists r ∈ M, P ∈ (Wr)M and G ∈ M which is P-generic over (Wr)M such that

U = (Wr)M[G]. �

Lemma 38. There is a total recursive function e : LMV → L∈(Ṁ) with the following

property. SupposeW |= MV, M is a world ofW , and N is the collection of sets ofW 1560

and ∈W is the membership relation inW . Then

W |= ϕ(~x, U0, ..., Un−1)⇔ 〈N, M,∈W 〉 |= e(ϕ)(~x, u0, ..., un−1)

where ui = ( f (M, Ui))
W for i < n.

Proof. The function e is defined by recursion on formula complexity:

• If x is a set variable and u is a world variable,

e(x ∈ U) = ∃(r, B, G) ∈ u (x ∈WṀ
r [G])

• For all atomic formulae ϕ not covered by the previous bullet, e(ϕ) = ϕ. 1565
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• e(¬ϕ) = ¬e(ϕ) and e(ϕ ∧ ψ) = e(ϕ) ∧ e(ψ).

• If x is a set variable e(∃xϕ) = ∃x e(ϕ).

• If U is a world variable, e(∃Uϕ) = ∃u ∈ SṀ e(ϕ).

A simple induction on the complexity of formulae of L∈ then suffices.

� 1570

Definition 39. If ϕ is a sentence in the multiverse language, then t(ϕ) is the

sentence in the language of set theory asserting that

Col(ω,<Ord) e(ϕ)∗

where we use the forcing language FLP(V̌) and where e(ϕ)∗ is the result of

replacing every instance of Ṁ in e(ϕ) with V̌.

Theorem 10. (Steel) IfM is a countable model of ZFC, G is Col(ω,<Ord)M-generic

overM and ϕ ∈ LMV , then:

M |= t(ϕ)⇔MG |= ϕ.

Proof. (⇒) SupposeMG |= ϕ. Then by Theorem 26 we see thatMG |= MV and 1575

so by Lemma 38

〈Mult[G],M,∈G〉 |= e(ϕ).

And by Lemma 18, we see that

∃p ∈ GM |= “p Col(ω,<Ord) e(ϕ)∗”.

Then since e(ϕ)∗ only uses -̌names (i.e., V̌) we see by the homogeneity of col-

lapse forcing100 that:

M |= “ Col(ω,<Ord) e(ϕ)∗”;

100See 10.19(a) in [Kanamori, 2003].
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i.e.,M |= t(ϕ). (⇐) Similar. � 1580

Theorem 9. There is a recursive function t : LMV → L∈ such that for all sentences

ϕ ∈ LMV , MV proves that the following are equivalent:

(1) ϕ

(2) ∀Ut(ϕ)U

(3) ∃Ut(ϕ)U
1585

Proof. Let W |= MV and taking a Skolem hull if necessary suppose that W is

countable. It suffices to show that (1),(2) and (3) have the same truth value in

W . First we note that by Theorem 27, W = MG for some worldM in W and

Col(ω,<)M-generic G over M. Suppose ϕ is true and let U be an arbitrary

world. By Theorem 10 we see that t(ϕ)U holds. Thus ∀U t(ϕ)U and since W 1590

must contain at least one world we have ∃U t(ϕ)U . Now suppose ∃U t(ϕ)U and

fix such a U. We then see by Theorem 10 that ϕ is true. �

C.1. Applications. Now we establish some applications of the translation func-

tion. First we observe that without the Amalgamation axiom, we cannot have a

translation function. 1595

Proposition 40. There is no recursive function s : LMV → L∈ such that for all ϕ ∈

LMV

MV minus Amagamation ` ϕ↔ ∀V s(ϕ)V .

Proof. Suppose not and fix such a t. LetM be a countable model of ZFC and let

MG be the multiverse defined fromM using some G Col(ω,< OrdM)-generic

overM. Let VM be the Woodin generic multiverse generated fromM. Then we 1600

see that:

(1) MG |= MV minus Amalgamation + Amalgamation;

(2) VM |= MV minus Amalgamation + ¬Amalgamation.
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Then since bothMG and VM are models of MV minus Amalgamation, we see

that:

MG |= Amalgamation ⇔ M |= s(Amalgamation)

⇔ VM |= Amalgamation

which is impossible. �

Now we show how large cardinals are naturally represented in the language 1605

of the multiverse.

Proposition 41. (ZFC) t(∀V∃κ (κ is measurable)V) iff there is a proper class of mea-

surable cardinals.

Recall the following fact from Lévy and Solovay:

Fact 42. Let κ be a cardinal and let P be a poset with |P| < κ. Then 1610

(1) if κ is measurable, then P κ is measurable; and

(2) if κ is not measurable, then P κ is not measurable.

Proof. (of Proposition 41) First observe that ∀V∃κ (κ is measurable)V translates

by t as

∀P  ∀r∃κ (κ is measurable)Wr

(←) Let P be arbitrary. Let G be P-generic over V. Let r ∈ V[G].101 Then 1615

we want to show that (Wr)V[G] still has a proper class of measurable cardinals.

First we observe that we have a definable inner model U = (Wr)V[G] with some

Q ∈ U and H ∈ V[G] which is Q-generic over U and such that

U[H] = V[G].

101Now that we’re familiar with the generic multiverse, we’ll allow ourselves to fall back into
the conventional luxury of talking about V-generics, although – of course – such talk is easily
removed.
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Now by Fact 42 (1), we see that for any κ > |P|V which is measurable ac-

cording to V, κ remains measurable in V[G]. Thus V[G] still has a proper class 1620

of measurable cardinals. Suppose now – for a contradiction – that there are no

measurable cardinals in U. Let κ > |Q|U where κ is measurable according to

U[H]. We can obtain such a cardinal since U[H] = V[G]. But since U says that κ

is not measurable, Fact 42 (2), tells us that κ is not measurable according to U[H]

either: contradiction. 1625

(→) Suppose α is such that for all κ > α, κ is not measurable. Let P =

Col(ω, {α}) and let G be P-generic over V. Let κ > α; then by Fact 42 (1), we see

that κ is not measurable according to V[G]. Let r ∈ V[G] be a vacuous refinement

parameter; i.e., let r be such that V[G] = (Wr)V[G]. Then we see that:

V[G] |= ∃r∀κ(κ is not measurable)Wr

and so exploiting the homogeneity of P102 we see that

P ∃r∀κ(κ is not measurable)Wr

⇒ 1P ∀r∃κ(κ is not measurable)Wr

which suffices for our claim. � 1630

We now establish that the range of the t function is the set of sentences which

are provably generically invariant.

Theorem 12. Let ϕ ∈ L∈. Then following are equivalent:

(1) MV ` ∀VϕV ∨ ∀V¬ϕV ; and

(2) ϕ is legitimateZFC. 1635

102See Theorem 10.19(a) of [Kanamori, 2003].
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Proof. (1→ 2) Suppose ϕ ∈ L∈. LetM be a countable model of ZFC. Recall that

M |= t(∀VϕV) ⇔ MG |= ∀VϕV .

And by assumption we have

MG |= ¬∀VϕV ↔ ∀V¬ϕV .

It will suffice to show that

M |= t(∀VϕV)↔ ϕ.

Suppose M |= t(∀VϕV). Then MG |= ∀VϕV and so M |= ϕ. Suppose M |=

¬t(∀VϕV). ThenMG |= ¬∀VϕV . ThusMG |= ∀V¬ϕV and soM |= ¬ϕ. 1640

(2 → 1) Suppose (1) is false and fix a multiverseW such thatW |= MV and

there exist worldsM0,M1 ∈ W such that

M0 |= ϕ andM1 |= ¬ϕ.

Now suppose for a contradiction that there is some ψ ∈ LMV such that

ZFC ` t(ψ)↔ ϕ.

Recall that if N is a countable model of ZFC, then for all multiverses U with

U |= MV and N ∈ U , we have 1645

U |= χ ⇔ N |= t(χ).

Thus, we see that our chosen ψ is such that:

(1) W |= ψ ⇔ M0 |= ϕ; and

(2) W |= ψ ⇔ M1 |= ϕ

which is clearly impossible. �
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It is then easy to see that this generalises if we extend our theories with large 1650

cardinals in the manner outlined above. For example, letting ZFC + pc(EXT) be

the theory extending ZFC with a proper class of extendible cardinals,

Theorem 43. For ϕ ∈ L∈, the following are equivalent:

(1) ZFC + pc(EXT) ` ∀VϕV ∨ ∀V¬ϕV ; and

(2) ϕ is legitimateZFC+pc(EXT). 1655

We then note that against the backdrop of ZFC, CH is not legitimate. More-

over, the mere existence of a core does not alter this.

Proposition 44. We have:

(1) ZFC 0 CH ↔ t(ψ) for any ψ ∈ LMV ; and

(2) ZFC + pc(EXT) 0 CH ↔ t(ψ) for any ψ ∈ L∈. 1660

Proof. (1) Suppose not. Then by Proposition 12 we see that MV ` ∀V CHV ∨

∀V¬CHV . This is clearly impossible. (2) Similar except use Theorem 43. �

Finally, we show that if we are at the core, then the obvious translation func-

tion allows us to establish that every sentence in the language of set theory is

legitimate. 1665

Theorem 17. For each ϕ ∈ L∈, there is a ψ ∈ LMV such that

ZFC + V = C ` ϕ↔ t(ψ).

We’ll first establish the key lemma.

Let s : L∈ → LMV be such that for ψ ∈ L∈ we have

s(ψ) = ψC;

i.e., ψ relativized to the formula defining the core in L∈.
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Lemma 45. For all sentences ϕ ∈ L∈,

ZFC + V = C ` t ◦ s(ϕ)↔ ϕ.

Proof. LetW be such thatW |= MV andM ∈ W . Then we note that

M |= t ◦ s(ϕ)⇔W |= s(ϕ)

⇔W |= ϕC

⇔M |= ϕ.

For the first⇔ we rely on Theorem 26 and Theorem 9. � 1670

Proof. (of Theorem 17) Let ϕ ∈ L∈. Let ψ be s(ψ). Then by Lemma 45, we see

that

ZFC + V = C ` t(ψ)↔ ϕ

as required. �


	1. Historical Background
	2. Motivation
	3. Natural Theories
	4. Multiverse language and theory
	5. The Translation Function
	6. The status of CH
	7. Caveats and conclusions
	References
	Appendix 
	A. Soundness and Completeness for MV
	B. Unaxiomatisability of VM 
	C. The translation


